# Heats of Dilution of Some Aqueous Rare Earth Electrolyte Solutions at 25 $^{\circ}$ C. 1. Rare Earth Perchlorates

Frank H. Spedding,\* Michael A. Mohs, John L. Derer, and Anton Habenschuss

Ames Laboratory-ERDA and Department of Chemistry, Iowa State University, Ames, Iowa 50011

The heats of dilution of aqueous  $La(ClO_4)_3$ ,  $Pr(ClO_4)_3$ , Nd(ClO<sub>4</sub>)<sub>3</sub>, Sm(ClO<sub>4</sub>)<sub>3</sub>, Gd(ClO<sub>4</sub>)<sub>3</sub>, Dy(ClO<sub>4</sub>)<sub>3</sub>, Er(ClO<sub>4</sub>)<sub>3</sub>, and Lu(ClO<sub>4</sub>)<sub>3</sub> solutions have been determined from approximately 0.001 *m* to saturation at 25 °C. The integral heats of solution of La(ClO<sub>4</sub>)<sub>3</sub>·8H<sub>2</sub>O, Nd(ClO<sub>4</sub>)<sub>3</sub>·8H<sub>2</sub>O, Gd(ClO<sub>4</sub>)<sub>3</sub>·8H<sub>2</sub>O, and Er(ClO<sub>4</sub>)<sub>3</sub>·8H<sub>2</sub>O in water at 25 °C have also been measured. The heat of dilution data are represented by empirical polynomial equations, and relative apparent and partial molal heat contents are calculated. The heat content data are correlated with the inner sphere water coordination numbers of the rare earth cations.

This work was undertaken as part of an extensive program to gain a better understanding of rare earth electrolyte solutions through the measurement of their thermodynamic and transport properties (4, 8, 10, 16, 18). Heats of dilution provide a measure of the energy changes involved in complex formation, hydration, modification of the solvent by the hydrated ions, and the electrical work between different solution states. The heats of dilution of a number of rare earth chlorides and nitrates have been measured up to 0.2 m (11, 13). These heats of dilution were shown to conform to the Debye-Hückel limiting law at concentrations below 0.006 m. At higher concentrations the heat data for the chlorides showed a two-series trend across the rare earth series which was correlated with dilute partial molal volume data of the rare earth chlorides (12). The two series trends have been interpreted as reflecting a difference in the inner sphere water coordination between the light and heavy rare earth cations (14). Heats of dilution of aqueous La(ClO<sub>4</sub>)<sub>3</sub> have recently been reported by Vanderzee and Nutter (19). Here we report heat of dilution measurements for eight rare earth perchlorate solutions from 0.001 m to saturation at 25 °C.

# **Experimental Section**

**Apparatus.** The adiabatically jacketed differential calorimeter used in this work has been previously described (11, 13). Although several modifications have been made since then (3, 7), the essential characteristics of the calorimeter remain unchanged. The sample holders previously described (11) were replaced by thin-walled, annealed Pyrex bulbs (2) which were broken by lowering them against pointed stainless steel rods.

To monitor the accuracy of the calorimeter, the heat of neutralization of HCI with NaOH at an ionic strength of 0.003 was determined. From a total of 28 neutralizations an average value of  $-13.338 \pm 0.020$  kcal mol<sup>-1</sup> was obtained at infinite dilution. This is in good agreement with -13.34 kcal mol<sup>-1</sup> recommended by Hepler and Woolley (5).

**Materials.** The solutions were prepared from the rare earth oxides and perchloric acid. The oxides were purified by ion-exchange methods by the Rare Earth Separation Group of the Ames Laboratory. Total rare earth impurities were less than 0.1% by weight, and total other impurities were also less than 0.1% by weight. The stock solutions were adjusted to the equivalence pH to ensure a 1:3 ratio of rare earth ions to perchlorate ions. The stock solutions, secondary stock solutions, and saturated solutions were analyzed by gravimetric sulfate (14) and EDTA (12) methods. The concentrations of the solutions were known to 0.1% in terms of molality. The dilutions were prepared by weight from the stock solutions and conductivity water having a specific conductance of less than  $1 \times 10^{-6}$  mho cm<sup>-1</sup>, all weights being corrected to vacuum. Detailed descriptions of the preparation and analyses of the solutions can be found in ref 3.

Hydrated crystals were grown from saturated solutions of lanthanum, neodymium, and gadolinium perchlorates at 25 °C. The crystals were dried over magnesium perchlorate until the stoichiometric equilibrium of the hydrate was reached. The rare earth content was determined by EDTA titration so that the rare earth content was known to 0.1%. In every case the crystals were the octahydrate to within 0.06 of a water molecule.

Growth of suitable hydrate crystals from the saturated solution of erbium perchlorate was unsatisfactory. For this reason the hydrated crystals obtained for erbium perchlorate were grown from a solution of  $Er(CIO_4)_3$  containing an excess of perchloric acid. Data from the  $Ce(CIO_4)_3$ -HCIO\_4-H<sub>2</sub>O phase system (25) indicated that the pure 8H<sub>2</sub>O hydrate would precipitate out without being contaminated with acid perchlorate, and analysis of the hydrate obtained from the mixture used indicated that the pure octahydrate was obtained. The ratio of  $Er(CIO_4)_3$ -HCIO<sub>4</sub>-H<sub>2</sub>O, in percent by weight, in the mixture was 35.2:24.7:35.2. The crystals grown from this mixture were washed with chloroform and dried under vacuum until they reached the octahydrate composition. The crystals were analyzed as described above.

**Procedure.** One (10 to 20 mL) or two (4 to 10 mL) sample bulbs were suspended in each calorimeter container and enough conductivity water was weighed into each container to give a total liquid content of 900 g.

When a sample of molality  $m_1$ , containing n' moles of rare earth, was diluted into water to give a solution of molality  $m_2$ , a quantity of heat q' was evolved. When the second sample of molality  $m_1$ , containing n'' moles of rare earth, was diluted into the solution of molality  $m_2$  to give a solution of molality  $m_3$ , a quantity of heat q'' was evolved. The relative apparent molal heat content is related to the evolved heat by the expressions

$$q' = n' [\phi_{\rm L}(m_2) - \phi_{\rm L}(m_1)] \tag{1}$$

$$q'' = (n' + n'')\phi_{\rm L}(m_3) - n''\phi_{\rm L}(m_1) - n'\phi_{\rm L}(m_2)$$
(2)

where  $\phi_{\rm L}(m_i)$  is the relative apparent molal heat content at concentration  $m_i$ . In general, two samples could be diluted in one run at high concentrations (q' and q''), while the large size of the sample bulb for dilute solutions allowed only one dilution per run (q').

Similarly, two samples of the crystal hydrates were used to obtain the heats of solution. Dissolving the first sample containing n' moles of rare earth octahydrate gave a solution of molality  $m_2$  with q' calories of heat being evolved. The second sample containing n'' moles of the rare earth hydrate, dissolved into this solution of molality  $m_2$  gave a solution of molality  $m_3$ , evolving q'' calories of heat. The heat of solution to infinite dilution, -L, is related to the heats evolved by

$$q' = n' [\phi_{\mathsf{L}}(m_2) - \overline{L}^{\cdot}] \tag{3}$$

$$q'' = (n' + n'')\phi_{\rm L}(m_3) - n'\phi_{\rm L}(m_2) - n''\overline{L}.$$
 (4)

Since the vapor pressure of water over rare earth perchlorate solutions decreases with concentration, water will evaporate into the empty volume of a sample bulb when a partially filled bulb is broken. The measured heat quantities were corrected for this effect, as well as for the heat of breaking the glass bulbs, and for daily variations in the ratio of the heat capacities of the two calorimeter containers. All heat of dilution and heat of solution measurements were made at  $25.00 \pm 0.02$  °C and the defined thermochemical calorie, 4.1840 absolute J, was used throughout this work.

# **Calculations and Results**

*Heats of Dilution and Heats of Solution.* The integral heats of dilution,  $\Delta H_{i,f}$ , are given by

$$\Delta H_{1,2} = \phi_{\rm L}(m_2) - \phi_{\rm L}(m_1) = q'/n' \tag{5}$$

$$\Delta H_{1,3} = \phi_{\rm L}(m_3) - \phi_{\rm L}(m_1) = (q' + q'')/(n' + n'')$$
 (6)

Similarly, the integral heats of solution,  $\Delta H_{x,f}$ , are given by

$$\Delta H_{\rm x,2} = \phi_{\rm L}(m_2) - \overline{L} = q'/n' \tag{7}$$

$$\Delta H_{x,3} = \phi_{\rm L}(m_3) - L = (q' + q'')/(n' + n'')$$
(8)

The experimental heats of dilution and solution are given in Tables I and II, respectively. The first set of entries for each salt in Table I refers to dilution of the saturated solution. For those groups of dilutions having the same initial concentration,  $m_i$ , the initial concentration is listed only once. For the final concentrations of each dilution or solution,  $m_f$ , an asterisk denotes sample dilution processes corresponding to eq 2 and 6, and 4 and 8, where  $m_f = m_3$ . These samples were diluted into the solution resulting from the dilution of the immediately preceding sample,  $m_f = m_2$ , corresponding to eq 1 and 5, and 3 and 7.

For the heats of dilution the dilution scheme was designed so that the final concentrations,  $m_2$  and  $m_3$ , covered the very dilute concentration range, <0.01 *m*, while the initial concentration,  $m_1$ , systematically covered the range from saturation to 0.01 *m*. The  $\Delta H_{1,2}$  and  $\Delta H_{1,3}$  values were combined to give heats of dilution in the dilute range

$$\Delta H_{3,2} = \Delta H_{1,2} - \Delta H_{1,3} = \phi_L(m_2) - \phi_L(m_3)$$
(9)

The  $\Delta H_{3,2}$  values and the corresponding  $m_i$  and  $m_f$  values are listed immediately following the  $\Delta H_{1,2}$  and  $\Delta H_{1,3}$  data in Table 1.

Initially the heats of dilution were analyzed by the "short chord–long chord" method of Young and co-workers (22–24) and its modification (9, 21). In this method (see ref 11, for example) the  $\Delta H_{3,2}$ , the "short chords", are used to extrapolate to infinite dilution with the aid of the Debye–Hückel limiting slope by means of a  $P_i$  plot,

$$\frac{\partial \phi_{\rm L}}{\partial m^{1/2}} \simeq \overline{P}_{\rm i} = \frac{\Delta H_{3,2}}{m_2^{1/2} - m_3^{1/2}} = A + Bm^{1/2} + Cm + \dots \quad (10)$$

where A is the limiting slope and  $m^{1/2} = 1/2(m_2^{1/2} + m_3^{1/2})$ . Integration of eq 10 gives  $\phi_{\rm L}$  up to 0.01 m, and  $\phi_{\rm L}$  from 0.01 m to saturation can be calculated from eq 5 and 6.

In our attempts to subsequently fit all of the  $\phi_L$  values over the whole concentration range within experimental precision, including the correct limiting behavior, we found that for the rare earth perchlorates this is possible with polynomials of the kind

$$\phi_{\rm L} = \sum_{j=1}^{7} A_j m^{p_j}$$
(11)

where  $A_1$  is the Debye–Hückel limiting slope with  $p_1 = 1/2$ , and the other  $p_j$  are certain multiples of  $\frac{1}{4}$  in the range  $\frac{3}{4}$  to  $\frac{16}{4}$ . This suggested the possibility of fitting the  $\Delta H_{i,f}$  values directly, omitting the more elaborate  $P_i$  analysis.



Figure 1.  $P_i$  plot for Sm(ClO<sub>4</sub>)<sub>3</sub>: plus,  $\Delta H_{3,2}/(m_2^{1/2} - m_3^{1/2})$ ; line,  $(d\phi_L/dm^{1/2})$  from eq 11.

If we assume that a single  $\phi_{L}$  equation can represent all of the concentration range, then from eq 5, 6, and 9 we have

$$\Delta H_{i,f} = \phi_{L}(m_{f}) - \phi_{L}(m_{i})$$
(12)

and from eq 11

$$\Delta H_{i,f} = \sum_{j=1}^{7} A_j (m_f^{p_j} - m_i^{p_j})$$
(13)

The  $A_i$  can be determined by least-squares methods. Then, by setting  $m_i = 0$ , eq 13 reduces to eq 11. The  $\phi_L$  values calculated from this  $\Delta H$  fit agreed with the  $\phi_L$  values obtained by the  $\overline{P}_i$  analysis to within the experimental precision of the data.

The main strength of the  $P_i$  treatment is that the extrapolation to zero concentration depends mostly on the data near where the limiting law should hold, and is not hindered by depending on data at higher concentrations. For this reason it is very important in our present treatment that the equation chosen is capable of fitting the  $\Delta H_{3,2}$  data in the dilute region accurately. In Figure 1 we show  $P_i$  data for Sm(ClO<sub>4</sub>)<sub>3</sub> based on the  $\Delta H_{3,2}$ values, together with  $(d\phi_L/dm^{1/2})$  calculated from our  $\Delta H$  fit based on all the data. It can be seen that the fit is acceptable. The coefficients,  $A_j$ , and powers,  $p_j$ , to be used with eq 11 and 13 are given in Table III. The differences between the experimental  $\Delta H_{i,f}$  and those calculated from eq 13 are given in the fourth column in Table I, and are plotted for Sm(ClO<sub>4</sub>)<sub>3</sub> in Figure 2 vs.  $m_i^{1/2}$ .

The particular powers,  $p_j$ , in eq 13 for each salt were chosen in the following way. First, it was determined that, in general, powers in multiples of  $m^{1/4}$  gave better fits than powers in multiples of m,  $m^{1/2}$ ,  $m^{1/3}$ ,  $m^{1/6}$ ,  $m^{1/8}$ , or  $m^{1/16}$ . In this and the following, the criterion for goodness of fit was the reduced  $\chi^2$ statistic (1). Second, best fits were obtained with  $p_1 = \frac{1}{2}$ , the



**Figure 2.** Comparison between experimental and calculated  $\Delta H$  from eq 13 for Sm(ClO<sub>4</sub>)<sub>3</sub>: solid circles,  $\Delta H_{1,2}$  and  $\Delta H_{1,3}$ ; open circles,  $\Delta H_{3,2}$ .

Journal of Chemical and Engineering Data, Vol. 22, No. 2, 1977 143

Table I. Heats of Dilution of Some Aqueous Rare Earth Perchlorate Solutions at 25 °C

| <u>i</u>  | 10 <sup>4</sup> m <sub>t</sub> | $-\Delta H_{i,f}$ , cal mol <sup>-1</sup> | Exptl – calcd<br>cal mol <sup>-1</sup> | σ,<br>cal mol <sup>-1</sup> | m <sub>i</sub> | 10 <sup>4</sup> m <sub>t</sub> | $-\Delta H_{i,f}$<br>cal_mol <sup>-1</sup> | Expti – calcd<br>cal mol <sup>-1</sup> | σ,<br>cal mol <sup>-1</sup> |
|-----------|--------------------------------|-------------------------------------------|----------------------------------------|-----------------------------|----------------|--------------------------------|--------------------------------------------|----------------------------------------|-----------------------------|
|           | Lan                            | thanum Perc                               | blorate                                |                             | 0.001 802      | 8.970                          | 53.3                                       | 6.0                                    | 5.1                         |
| 4,791     | 8.9700                         | 7089.5                                    | 11.4                                   | 3.8                         | 0.001 433      | 7.409                          | 49.8                                       | 2.5                                    | 3.7                         |
|           | 18.020**                       | 7036.2                                    | 5.3                                    | 4.7                         | 0.001 459      | 7.247                          | 53.3                                       | 2.1                                    | 3.7                         |
|           | 8.9401                         | 7093.3                                    | 7.8                                    | 3.8                         | 0.002 625      | 14.311                         | 54.2                                       | 4.8                                    | 5.4                         |
|           | 17.944*                        | 7037.8                                    | 4.1                                    | 4.7                         | 0.002 338      | 10.074                         | 81.4                                       | -5.2                                   | 5.4                         |
| 4.465     | 7.2469                         | 6347.7                                    | -9.2                                   | 2.8                         | 0.005 011      | 27.458                         | 64.7                                       | 5.0                                    | 8.2                         |
|           | 14.592*                        | 6294.4                                    | -11.3                                  | 3.4                         | 0.004 /17      | 24.423                         | 73.8                                       | 0.9                                    | 8.2                         |
|           | 7.4093                         | 6350.9                                    | -14.0                                  | 2.8                         | 0.002 457      | 11.343                         | 68.7<br>50.0                               | 3.1                                    | 3.6                         |
|           | 14.334*                        | 6301.1                                    | -16.4                                  | 3.4                         | 0.002 400      | 15.917                         | 59.9                                       | 4.0                                    | 3.0                         |
| 4.093     | 10.074                         | 5449.5                                    | 15.8                                   | 4.0                         | 0.003 238      | 17 783                         | 66.4                                       | -0.8                                   | 3.9                         |
|           | 23.377*                        | 5368.1                                    | 21.1                                   | 4.9                         | 0.003.678      | 18 602                         | 70.1                                       | 21                                     | 3.5                         |
|           | 14.311                         | 5407.4                                    | 28.7                                   | 4.0                         | 0.003 797      | 18.481                         | 77.9                                       | -1.3                                   | 3.5                         |
| 0.501     | 26.245*                        | 5353.2                                    | 23.9                                   | 4.9                         | 0.006 075      | 29.398                         | 85.5                                       | 1.2                                    | 3.7                         |
| 3.581     | 24.423                         | 4200.7                                    | 14.0                                   | 0.0<br>7 X                  | 0.005 892      | 30.085                         | 78.4                                       | 1.8                                    | 3.7                         |
|           | 47.109                         | 4166.9                                    | 10.0                                   | 7.4                         | 0.005 360      | 27.092                         | 77.0                                       | 2.6                                    | 3.1                         |
|           | 27.400<br>50.112*              | 4243.0                                    | 19.1                                   | 0.0                         | 0.006 410      | 31.697                         | 82.3                                       | 3.0                                    | 2.4                         |
| 3 255     | 12 117                         | 3676.4                                    | -3.8                                   | 27                          | 0.009 395      | 39.854                         | 108.1                                      | 2.2                                    | 2.8                         |
| 5.205     | 24 000*                        | 3616.5                                    | -7.8                                   | 2.7                         | 0.009 061      | 43.705                         | 93.0                                       | 1.4                                    | 2.8                         |
|           | 11.343                         | 3678.9                                    | -0.8                                   | 27                          |                |                                |                                            |                                        |                             |
|           | 24 572*                        | 3610.2                                    | -3.9                                   | 3.3                         |                | Prase                          | odymium Pe                                 | rchlorate                              |                             |
| 2.902     | 17.783                         | 2959.6                                    | -3.2                                   | 2.9                         | 4 695          | 4 3586                         | 6622.3                                     | 3.4                                    | 17                          |
| 2.002     | 33.432*                        | 2893.2                                    | -2.4                                   | 3.5                         | 4.000          | 8.3484*                        | 6594.0                                     | -60                                    | 24                          |
|           | 15.817                         | 2972.5                                    | -5.3                                   | 2.9                         |                | 4.0220                         | 6625.6                                     | 4 1                                    | 1.6                         |
|           | 32.376*                        | 2903.1                                    | -8.7                                   | 3.5                         |                | 7.8535*                        | 6601.0                                     | -9.1                                   | 2.3                         |
| 2,565     | 18,481                         | 2356.9                                    | -3.8                                   | 2.6                         | 4.255          | 5.3322                         | 5488.4                                     | 0.6                                    | 1.8                         |
|           | 37.970*                        | 2279.0                                    | -2.5                                   | 3.2                         |                | 10.604*                        | 5450.8                                     | -5.2                                   | 2.5                         |
|           | 18.602                         | 2356.3                                    | -3.9                                   | 2.6                         |                | 5.5215                         | 5483.5                                     | 3.5                                    | 1.8                         |
|           | 36.784*                        | 2286.2                                    | -6.0                                   | 3.2                         |                | 10.793*                        | 5448.1                                     | -3.8                                   | 2.5                         |
| 2.238     | 38.341                         | 1747.0                                    | 8.3                                    | 2.8                         | 3.862          | 6.6604                         |                                            | _                                      | _                           |
|           | 18.680                         | 1826.1                                    | 5.9                                    | 3.2                         |                | 13.047*                        | 4550.8                                     | 5.5                                    | 2.1                         |
|           | 30.085                         | 1779.1                                    | 3.7                                    | 2.7                         |                | 6.1428                         | 4606.5                                     | 0.6                                    | 1.8                         |
|           | 58.921*                        | 1700.7                                    | 1.9                                    | 3.4                         |                | 12.419*                        | 4567.1                                     | -7.0                                   | 2.5                         |
|           | 29.398                         | 1782.3                                    | 3.1                                    | 2.7                         |                | 7.1657                         | _                                          | _                                      | _                           |
|           | 60.746*                        | 1696.8                                    | 1.9                                    | 3.4                         |                | 14.268*                        | 4544.0                                     | 5.3                                    | 2.3                         |
| 1.982     | 27.092                         | 1432.3                                    | 6.4                                    | 2.3                         |                | 7.1976                         | 4595.0                                     | 2.5                                    | 2.0                         |
|           | 53.597*                        | 1355.3                                    | 3.8                                    | 2.8                         |                | 14.370*                        | 4544.3                                     | 4.5                                    | 2.8                         |
|           | 27.217                         | 1438.0                                    | 0.2                                    | 2.3                         | 3.398          | 6.7974                         | 3666.3                                     | -3.4                                   | 1.7                         |
| 1.733     | 31.697                         | 1123.5                                    | 3.2                                    | 2.0                         |                | 15.531*                        | 3612.2                                     | -7.8                                   | 2.7                         |
|           | 64.096*                        | 1041.2                                    | 0.2                                    | 2.1                         |                | 8.5256                         |                                            |                                        |                             |
|           | 31.517                         |                                           |                                        |                             |                | 17.094*                        | 3603.8                                     | -7.3                                   | 2.2                         |
|           | 63.952*                        | 1040.0                                    | 1.7                                    | 2.6                         | 2.930          | 12.332                         | 2751.7                                     | 0.8                                    | 2.0                         |
| 1.465     | 43.705                         | 837.3                                     | -2.6                                   | 2.1                         |                | 23.274*                        | 2700.7                                     | -1.6                                   | 2.6                         |
|           | 90.611*                        | 744.3                                     | -3.9                                   | 2.6                         |                | 11.859                         | 2756.5                                     | -1.0                                   | 2.0                         |
|           | 39.854                         | 847.0                                     | -1.3                                   | 2.1                         |                | 24.636*                        | 2698.7                                     | -5.0                                   | 2.9                         |
| 4 470     | 93.954                         | 738.9                                     | -3.5                                   | 2.6                         | 2.508          | 15.362                         | 2022.1                                     | 4.8                                    | 1.9                         |
| 1.170     | 34.281                         | 670.0                                     | -2.5                                   | 1.7                         |                | 31.492*                        | 1956.7                                     | 4.5                                    | 2.7                         |
| 1 005     | 34.200                         | 5710                                      | 0.5                                    | 1.7                         |                | 13.005                         | 2016.5                                     | 6.9<br>5.0                             | 1.9                         |
| 1.005     | 41.105                         | 571.0                                     | - 1.2                                  | 1.7                         | 2 150          | 19 209                         | 1401 4                                     | 5.0                                    | ∠.0<br>1.7                  |
| 0 816 7   | 40.322                         | 545.0                                     | -18                                    | 1.7                         | 2.150          | 38 9 17 *                      | 1491.4                                     | - 1.0                                  | 1.7                         |
| 0.0107    | 32 994                         | 544.0                                     | -0.3                                   | 1.3                         |                | 17 525                         | 1415.5                                     | -3.5                                   | 2.4                         |
| 0 644 8   | 33 212                         | 5210                                      | 0.6                                    | 1.3                         |                | 38 164*                        | 1420.6                                     | -27                                    | 24                          |
| 0.0110    | 32,160                         | 524.0                                     | 1.3                                    | 1.3                         | 1.966          | 25.514                         | 1227 4                                     | -0.4                                   | 19                          |
| 0.493 9   | 29.441                         | 529.0                                     | 1.9                                    | 1.6                         |                | 54.304*                        | 1143.5                                     | 2.6                                    | 2.7                         |
|           | 26,173                         | 538.0                                     | 5.6                                    | 1.6                         |                | 24,422                         | 1230.6                                     | 0.6                                    | 1.9                         |
| 0.350 4   | 26.235                         | 546.0                                     | -2.7                                   | 1.8                         |                | 52.341*                        | 1146.4                                     | 4.1                                    | 2.6                         |
|           | 23.571                         | 556.0                                     | - 1.5                                  | 1.8                         | 1.773          | 32.347                         | 991.8                                      | -2.3                                   | 1.9                         |
| 0.250 0   | 16.346                         | 588.0                                     | -4.4                                   | 2.7                         |                | 67.934*                        | 904.9                                      | 0.2                                    | 2.6                         |
|           | 16.233                         | 586.0                                     | -1.8                                   | 2.7                         |                | 31.656                         | 996.6                                      | -4.8                                   | 1.9                         |
| 0.161 1   | 11.635                         | 594.0                                     | -3.6                                   | 3.2                         |                | 68.556*                        | 906.6                                      | -2.7                                   | 2.7                         |
|           | 11.263                         | 599.0                                     | -5.9                                   | 3.2                         | 1.521          | 44.733                         | 726.8                                      | 0.5                                    | 1.8                         |
|           | 12.348                         | 585.0                                     | 0.5                                    | 3.2                         |                | 86.942*                        | 647.2                                      | -0.9                                   | 2.3                         |
| 0.089 12  | 7.9919                         | 562.0                                     | 4.8                                    | 3.7                         |                | 41.083                         | 729.9                                      | 6.9                                    | 1.8                         |
|           | 7.9750                         | 560.0                                     | 6.9                                    | 3.7                         |                | 87.263*                        | 646.3                                      | -0.5                                   | 2.4                         |
| 0.039 91  | 3.3636                         | 522.0                                     | -0.7                                   | 10.0                        | 1.305          | 36.255                         | 610.7                                      | -5.2                                   | 1.3                         |
| 0.040.0-  | 3.1684                         | 526.0                                     | -1.6                                   | 10.0                        |                | 74.613*                        | 522.2                                      | -1.0                                   | 1.7                         |
| 0.010 27  | 0.8214                         | 378.0                                     | 5.7                                    | 10.0                        |                | 36.232                         | 606.4                                      | -0.8                                   | 1.3                         |
| 0.001 794 | 8.940                          | 55.5                                      | 3.7                                    | 5.1                         |                | 74.013 <b>*</b>                | 526.1                                      | -3.9                                   | 1.7                         |

Table I (Continued)

\_\_\_\_

|             | 104                | $-\Delta H_{i,f},$ | Expti - calcd | $\sigma$ , |                | 104                 | $-\Delta H_{i,f}$ | Expti - calcd | $\sigma$ , |
|-------------|--------------------|--------------------|---------------|------------|----------------|---------------------|-------------------|---------------|------------|
| m           | 10* m <sub>f</sub> |                    |               |            | m <sub>i</sub> | 10" m <sub>f</sub>  | cal mol           | calmoi        |            |
| 1.119       | 49.791             | 483.3              | -0.8          | 1.3        | 2.879          | 14.130              | 2563.9            | -2.4          | 2.2        |
|             | 100.293            | 396.0              | -1.2          | 1.7        |                | 28.580*             | 2499.6            | -1.1          | 2.7        |
|             | 51.468             | 473.7              | 5.0           | 1.3        |                | 13.242              | 2573.3            | -6.7          | 2.2        |
|             | 102.515*           | 387.9              | 4.0           | 1.7        |                | 27.889*             | 2503.9            | -3.0          | 2.7        |
| 0.952 9     | 38.593             | 461.3              | 0.0           | 1.3        | 2.603          | 18.992              | 2074.4            | 4.2           | 2.5        |
|             | 70.345             | 381.0              | -0.3          | 2.0        |                | 41.204*             | 1996.6            | 5.2           | 3.0        |
|             | 37.905             | 403.2              | -3.3          | 1.3        |                | 19.705              | 2072.9            | 2.5           | 2.5        |
| 0 709 6     | 58 126             | 380.3              | 5.5           | 2.5        |                | 40.437*             | 1998.7            | 5.2           | 3.0        |
| 0.700 0     | 58 280             | 379.3              | 6.4           | 1.6        | 2.254          | 20.784              | 1550.5            | 0.7           | 1.8        |
| 0.504 2     | 47.716             | 422.8              | -4.8          | 1.5        |                | 40.183*             | 1480.0            | 5.2           | 2.3        |
|             | 45.822             | 424.6              | -2.0          | 1.4        |                | 20.268              | 1556.0            | -2.5          | 1.8        |
|             | 44.984             | 429.2              | -4.5          | 1.4        |                | 39.640              | 1405.0            | 0.9           | 2.3        |
| 0.382 0     | 32.523             | 474.1              | -1.3          | 1.5        | 1.964          | 27.626              | 1154.1            | 2.6           | 2.0        |
|             | 33.342             | 468.1              | 2.1           | 1.4        |                | 58.706              | 1069.2            | 4.0           | 2.4        |
| 0.256 4     | 31.696             | 484.3              | 0.8           | 1.5        |                | 29.432              | 1066.2            | 3.1           | 2.0        |
|             | 31.653             | 482.4              | 2.9           | 1.5        | 4.070          | 59.151              | 1000.2            | 5.4           | 2.4        |
| 0.160 8     | 20.866             | 516.3              | -1.1          | 2.4        | 1.670          | 33.339              | 841.8             | -5.3          | 1.7        |
|             | 20.794             | 512.5              | 3.0           | 2.4        |                | /1.9/8*             | 750.3             | -3.0          | 2.1        |
| 0.099 76    | 14.491             | 517.5              | -5.0          | 3.1        |                | 35.117              | 034.0<br>749.4    | -3.8          | 1.7        |
| 0 0 4 4 7 4 | 14.664             | 512.3              | 0.7           | 3.1        |                | 72.042              | 740.4             | 2.2           | 2.1        |
| 0.04174     | 6.7044             | 470.1              | -6.7          | 4.0        | 1.444          | 52.722              | 609.9             | -1.2          | 1.7        |
| 0 000 935   | 0.7000             | 470.2              | -0.9          | 4.0        |                | 102.941             | 524.3             | -0.7          | 2.1        |
| 0.000 785   | 4.339              | 20.3               | 3.4<br>13.2   | 2.0        |                | 107 952*            | 517.3             | -0.2          | 2.1        |
| 0.001.060   | 5 332              | 37.7               | 57            | 2.4        | 4 007          | 107.952             | 517.3             | -0.2          | 2.1        |
| 0.001.079   | 5.521              | 35.3               | 7.4           | 2.7        | 1.227          | 49.323              | 490.0             | 4.2           | 1.7        |
| 0.001 242   | 6.143              | 39.3               | 7.7           | 2.7        |                | 47.748              | 499.0             | -1.0          | 1.7        |
| 0.001 437   | 7.198              | 50.7               | -1.9          | 3.1        | 1.005          | 38.963              | 445.0             | -1.1          | 1.3        |
| 0.001 553   | 6.797              | 54.2               | 4.3           | 2.8        |                | 41.216              | 437.0             | 0.7           | 1.3        |
| 0.002 327   | 12.332             | 51.0               | 2.5           | 2.9        | 0.794 5        | 46.717              | 392.0             | 1.3           | 1.4        |
| 0.002 464   | 11.859             | 57.8               | 3.9           | 3.2        |                | 50.937              | 382.0             | 1.3           | 1.4        |
| 0.003 149   | 15.362             | 65.4               | 0.4           | 2.9        | 0.639 0        | 32.856              | 431.0             | 1.8           | 1.6        |
| 0.003 127   | 15.665             | 59.6               | 3.9           | 2.8        |                | 34.928              | 428.0             | -1.6          | 1.6        |
| 0.003 892   | 18.208             | 77.9               | -4.1          | 2.6        | 0.476 3        | 27.731              | 473.0             | -5.8          | 2.0        |
| 0.003 816   | 17.525             | 75.7               | -0.7          | 2.6        |                | 26.564              | 474.0             | -2.6          | 2.0        |
| 0.005 430   | 25.514             | 83.8               | -2.9          | 2.9        | 0.360 6        | 23.387              | 501.0             | -0.4          | 2.2        |
| 0.005 234   | 24.422             | 84.2               | -3.5          | 2.8        |                | 24.030              | 495.0             | 3.1           | 2.2        |
| 0.006 793   | 32.347             | 86.9               | -2.4          | 2.9        | 0.249 6        | 15.117              | 549.0             | 1.7           | 2.9        |
| 0.000 800   | 31.000             | 90.1               | -2.3          | 2.9        |                | 16.185              | 542.0             | 3.1           | 2.9        |
| 0.008 726   | 44.733             | 79.0               | 7.4           | 2.5        | 0.159 9        | 11.149              | 569.0             | -2.1          | 3.4        |
| 0.007 461   | 36 255             | 88.5               | -4.2          | 1.8        |                | 10.890              | 568.0             | 0.7           | 3.4        |
| 0.007 401   | 36 232             | 80.3               | 3.1           | 1.0        | 0.100 4        | 6.4161              | 563.0             | 9.3           | 3.9        |
| 0.010.03    | 49.791             | 87.3               | 0.4           | 1.9        |                | 6.7808              | 562.0             | 7.0           | 3.9        |
| 0.010 25    | 51.468             | 85.7               | 1,1           | 1.9        | 0.042 21       | 3.6328              | 517.0             | - 16.0        | 10.0       |
| 0.007 634   | 38.593             | 80.3               | 0.2           | 2.7        | 0.010.50       | 3.1082              | 497.0             | 11.2          | 10.0       |
| 0.007 602   | 37.905             | 78.6               | 3.3           | 2.6        | 0.010 50       | 0.0947              | 416.0             | - 56.6        | 10.0       |
|             |                    |                    |               |            | 0 002 023      | 11 785 <sup>b</sup> | 400.0             | -47.1         | 49         |
|             | Neo                | dymium Pero        | blorate       |            | 0.001.818      | 8 602               | 62.3              | -5.3          | 4.9        |
| 4.685       | 8.6025             | 6383.0             | -1.5          | 3.6        | 0.001.746      | 8 976               | 48.8              | 1.9           | 4.2        |
|             | 18.182*            | 6320.7             | 3.8           | 4.5        | 0.001 752      | 8.726               | 53.0              | -0.1          | 4.2        |
|             | 11.785             | 6343.7             | 15.6          | 3.6        | 0.002 905      | 14.977              | 55.4              | 4.6           | 5.7        |
|             | 20.232*            | 6300.2             | 14.9          | 4.5        | 0.002 982      | 14.969              | 65.8              | -3.1          | 5.7        |
| 4.509       | 8.7261             | 5937.4             | -12.0         | 3.1        | 0.003 409      | 17.548              | 62.9              | 0.3           | 5.4        |
|             | 17.523*            | 5884.4             | -11.9         | 3.8        | 0.003 449      | 17.073              | 67.5              | -0.7          | 5.4        |
|             | 8.9760             | 5932.4             | -8.9          | 3.1        | 0.003 044      | 15.896              | 63.4              | -3.6          | 3.8        |
|             | 17.464*            | 5883.6             | -10.9         | 3.8        | 0.002 789      | 13.242              | 69.4              | -3.7          | 2.9        |
| 4.075       | 14.969             | 4869.2             | 9.2           | 4.2        | 0.002 858      | 14.130              | 64.3              | -1.3          | 2.9        |
|             | 29.823*            | 4803.4             | 12.3          | 5.2        | 0.004 044      | 19.705              | 74.2              | -2.7          | 3.4        |
|             | 14.977             | 4864.9             | 13.4          | 4.2        | 0.004 120      | 18.992              | 77.8              | -1.0          | 3.4        |
| 0.005       | 29.052*            | 4809.5             | 8.8           | 5.2        | 0.003 964      | 20.268              | 70.2              | -3.4          | 2.5        |
| 3.625       | 17.073             | 3926.5             | 7.2           | 4.0        | 0.004 018      | 20.784              | 70.5              | -4.5          | 2.5        |
|             | 34.492*            | 3039.0             | 7.9           | 4.9        | 0.005 974      | 29.452              | 81.0              | -2.3          | 2.6        |
|             | 17.040             | 3921.3<br>3959 6   | 9.9           | 4.U<br>1 0 | 0.005 8/1      | 27.626              | 84.9              | - 1.9         | 2.6        |
| 3 223       | 15 206             | 317/ 3             | 9.0           | 4.9<br>0.0 | 0.007 204      | 35,11/              | 85.4              | -1.5          | 2.3        |
| 0.2 60      | 30 437*            | 3110.9             | -0.3          | 2.0        | 0.007 196      | 33.339<br>50 700    | 91.5<br>0 0 0     | -2.3          | 2.3        |
|             | 14.062             | 3193.0             | -15.1         | 3.3        | 0.010.29       | 52.722              | 90.2<br>85 6      | -0.5          | 2.3        |
|             |                    |                    |               | 0.0        | 0.01020        | JE., 22             | 00.0              | 0.0           | 2.0        |

|            |                    | $-\Delta H_{if}$      | Exptl - calcd         | σ.                    |           |                                | $-\Delta H_{\rm blue}$ | Expt! - calcd         | σ.                    |
|------------|--------------------|-----------------------|-----------------------|-----------------------|-----------|--------------------------------|------------------------|-----------------------|-----------------------|
| <b>m</b> i | 104 m.             | cal mol <sup>-1</sup> | cal mol <sup>-1</sup> | cal mol <sup>-1</sup> | m         | 10 <sup>4</sup> m <sub>t</sub> | cal mol <sup>-1</sup>  | cal mol <sup>-1</sup> | cal mol <sup>-1</sup> |
|            |                    |                       |                       |                       | 0.001.010 | 7.050                          |                        |                       | 1.0                   |
|            | Sar                | marium Perch          | lorate                |                       | 0.001 619 | 7.659                          | 55.2                   | -0.4                  | 4.2                   |
| 4 640      | 5 8300             | 6275 6                | 16.6                  | 2.2                   | 0.001 585 | 7.678                          | 47.5                   | 5.3                   | 4.0                   |
| 4.040      | 11675*             | 6240.2                | 6.5                   | 2.2                   | 0.001 936 | 8.992                          | 52.4                   | 7.2                   | 4.3                   |
|            | 5 6933             | 6306 4                | -12.9                 | 3.1                   | 0.002 016 | 9.810                          | 47.8                   | 9.4                   | 4.4                   |
|            | 11 560*            | 6266.0                | - 12.0                | 2.2                   | 0.002 194 | 10.706                         | 51.5                   | 7.2                   | 3.7                   |
| 4 004      | 7 6501             | 5470.4                | - 18.0                | 3.2                   | 0.002 523 | 12.445                         | 61.4                   | -0.7                  | 3.4                   |
| 4.324      | 7.0091             | 5478.4                | ~-0.5                 | 2.0                   | 0.002 549 | 12.282                         | 70.9                   | -8.2                  | 3.4                   |
|            | 16.190*            | 5423.2                | -0.1                  | 3.9                   | 0.003 629 | 18.103                         | 66.4                   | 0.8                   | 3.4                   |
|            | 7.6784             | 5475.7                | 2.0                   | 2.6                   | 0.003 556 | 17.368                         | 69.4                   | -0.8                  | 3.3                   |
|            | 15.851             | 5428.2                | -3.3                  | 3.8                   | 0.004 862 | 24.360                         | 71.6                   | 1.3                   | 3.4                   |
| 4.006      | 8.9919             | 4/48.3                | 7.9                   | 2.7                   | 0.004 913 | 24.435                         | 70.9                   | 2.9                   | 3.4                   |
|            | 19.360*            | 4695.9                | 0.8                   | 4.1                   | 0.005 454 | 27.329                         | 74.7                   | 0.6                   | 2.9                   |
|            | 9.8104             | 4741.4                | 8.8                   | 2.8                   | 0.005 435 | 27.060                         | 72.9                   | 2.9                   | 2.9                   |
|            | 20.158*            | 4693.6                | -0.5                  | 4.1                   | 0.005 713 | 28.296                         | 80.6                   | -3.2                  | 2.4                   |
| 3.433      | 11,142             |                       |                       |                       | 0.005 730 | 28.517                         | 78.0                   | -1.0                  | 2.4                   |
|            | 22.168*            | 3555.4                | -9.3                  | 2.7                   | 0.006 411 | 31.853                         | 79.7                   | -0.2                  | 2.6                   |
|            | 10.706             | 3606.2                | -0.5                  | 2.4                   | 0.005 615 | 28.074                         | 77.1                   | - 1.0                 | 1.9                   |
|            | 21.936*            | 3554.8                | -7.7                  | 3.4                   | 0.005 584 | 27.886                         | 76.1                   | 0.0                   | 1.8                   |
| 3.051      | 12.445             | 2913.6                | -7.2                  | 2.2                   |           | Gad                            | Iolinium Percl         | hlorate               |                       |
|            | 25.233*            | 2852.2                | -6.5                  | 3.1                   | 4.611     | 8.4681                         | 6799.0                 | 2.1                   | 4.0                   |
|            | 12.282             | 2909.5                | -2.1                  | 2.2                   |           | 8.3175                         | 6807.0                 | -4.7                  | 4.0                   |
|            | 25.487*            | 2838.6                | 6.1                   | 3.2                   | 4.205     | 6.9064                         | 5852.2                 | 4.0                   | 2.4                   |
| 2.560      | 18.103             | 2072.6                | 3.0                   | 2.3                   |           | 13.631*                        | 5802.1                 | 5.7                   | 3.0                   |
|            | 36.291*            | 2006.2                | 2.2                   | 3.1                   |           | 6.8225                         | 5862.0                 | -5.1                  | 2.8                   |
|            | 17.368             | 2078.6                | 0.6                   | 2.2                   | 3.827     | 7.9580                         | 5035.6                 | 1.0                   | 2.5                   |
|            | 35.564*            | 2009.2                | 1.4                   | 3.1                   |           | 16.176*                        | 4980.8                 | 2.4                   | 3.0                   |
| 2.244      | 24.360             | 1596.7                | 4.2                   | 2.3                   |           | 8.0826                         | 5040.6                 | -5.0                  | 2.5                   |
|            | 48.619*            | 1525.1                | 2.9                   | 3.1                   |           | 16.257*                        | 4982.9                 | -0.1                  | 3.0                   |
|            | 24.435             | 1594.2                | 6.4                   | 2.3                   | 3.499     | 12.180                         | 4352.0                 | -6.1                  | 3.6                   |
|            | 49.134*            | 1523.3                | 3.4                   | 3.2                   |           | 12,180                         | 4351.9                 | -6.0                  | 3.1                   |
| 1.942      | 27.329             | 1221.6                | 0.9                   | 2.0                   |           | 23.668*                        | 4289.1                 | -0.9                  | 3.8                   |
|            | 54.538*            | 1146.9                | 0.4                   | 2.6                   | 3.104     | 17.682                         | 3559.6                 | 3.8                   | 3.5                   |
|            | 27.060             | 1218.9                | 4.6                   | 20                    | •••••     | 33 5 13                        | 3496.6                 | 4.2                   | 4.3                   |
|            | 54.352*            | 1146.0                | 17                    | 2.6                   |           | 17 497                         | 3557 7                 | 6.7                   | 3.5                   |
| 1.693      | 28 296             | 974.6                 | -49                   | 1.6                   |           | 33 443*                        | 3495.4                 | 5.6                   | 4 3                   |
| 1.000      | 57 129*            | 894.0                 | -17                   | 22                    | 2 891     | 14 723                         | 3200.0                 | -5.7                  | 4.1                   |
|            | 28 5 17            | 964.4                 | 4.5                   | 1.6                   | 2.001     | 14.608                         | 3197.2                 | -22                   | 3.5                   |
|            | 57 302*            | 886 4                 | 5.5                   | 2.0                   |           | 27 720*                        | 3139.7                 | -37                   | 4.3                   |
|            | 31 330             | 956.2                 | 3.5                   | 2.2                   | 2 380     | 21.120                         | 2324 1                 | 4.0                   | 2.8                   |
|            | 31 953             | 950.2                 | 0.0                   | 1.8                   | 2.505     | 41 409*                        | 2024.1                 | 4.0                   | 3.4                   |
|            | 64 109+            | 937.7                 | 0.0                   | 2.4                   | 2.074     | 24 621                         | 19/0 3                 | 5.7                   | 27                    |
| 1 4 4 4    | 09.074             | 780.6                 | -60                   | 1.7                   | 2.074     | 40.365*                        | 1775 1                 | 37                    | 33                    |
| 1.444      | 20.074             | 700.0                 | -0.0                  | 1.3                   |           | 49.303                         | 1953.2                 | 2.1                   | 27                    |
|            | 07 006             | 703.0                 | -3.1                  | 1.7                   |           | 40.351*                        | 1774.0                 | 2.1                   | 2.7                   |
|            | 27.000             | 770.2                 | -2.9                  | 1.3                   | 1 000     | 49.331                         | 1503.4                 | -67                   | 2.5                   |
| 1 000      | 55.636             | 702.1                 | -2.9                  | 1.7                   | 1.025     | 29.724                         | 1445 6                 | -6.1                  | 2.0                   |
| 1.200      | 50.546             | 015.7                 | 0.2                   | 2.2                   |           | 00.600                         | 1500.4                 | -56                   | 2.5                   |
|            | 50.595             | 615.4                 | 0.4                   | 2.2                   |           | 29.692                         | 1522.4                 | -5.6                  | 2.0                   |
| 1.107      | 53.342             | 526.0                 | 3.2                   | 2.0                   | 4 550     | 57.800                         | 1444.1                 | -4.2                  | 3.1                   |
|            | 55.428             | 523.0                 | 1.6                   | 2.1                   | 1.556     | 14.846                         | 1299.5                 | -6.5                  | 1.7                   |
| 0.922 6    | 74.409             | 431.6                 | 3.1                   | 2.3                   |           | 24.275                         | 1258.1                 | -9.4                  | 2.1                   |
|            | 75.341             | 431.0                 | 2.1                   | 2.3                   |           | 14.907                         | 1293.4                 | -0.7                  | 1.7                   |
| 0.747 4    | 75.504             | 403.3                 | 4.0                   | 2.2                   |           | 24.433*                        | 1251.9                 | 3.9                   | 2.1                   |
|            | 77.632             | 398.9                 | 4.8                   | 2.2                   |           | 38.900                         | 1198.1                 | 0.9                   | 1.7                   |
| 0.611 6    | 71.874             | 406.4                 | 1.4                   | 2.1                   |           | 74.667*                        | 1115.2                 | 3.0                   | 2.1                   |
|            | 70.637             | 407.2                 | 2.8                   | 2.1                   |           | 39.075                         | 1194.7                 | 3.8                   | 1.7                   |
| 0.498 1    | 56.991             | 439.8                 | -1.1                  | 1.8                   |           | 74.822*                        | 1113.9                 | 4.1                   | 2.1                   |
| 0.498 1    | 57.219             | 438.5                 | -0.3                  | 1.8                   | 1.320     | 42,107                         | 981.9                  | 0.6                   | 2.0                   |
| 0.375 2    | 47.588             | 465.2                 | 0.2                   | 1.6                   |           | 89.302*                        | 884.2                  | 2.1                   | 2.4                   |
|            | 51.519             | 457.5                 | -1.4                  | 1.7                   |           | 41.977                         | —                      |                       |                       |
| 0.249 7    | 32.099             | 508.8                 | -0.6                  | 1.2                   |           | 89.246*                        | 884.5                  | 1.9                   | 2.1                   |
|            | 26.838             | 528.7                 | -2.5                  | 1.7                   |           | 21.884                         | 1052.3                 | -1.0                  | 2.0                   |
|            | 28.641             | 518.6                 | 1.2                   | 1.6                   |           | 32.422*                        | 1015.4                 | -3.8                  | 2.4                   |
| 0.211 9    | 28.533             | 516.5                 | -0.7                  | 1.6                   | 1.081     | 20.702                         | 894.8                  | -1.0                  | 1.3                   |
|            | 30.518             | 509.1                 | -0.1                  | 1.4                   |           | 32.138*                        | 850.6                  | -0.7                  | 1.6                   |
| 0.143 6    | 22.164             | 521.5                 | -2.2                  | 2.2                   |           | 20.967                         | 892.8                  | -0.2                  | 1.3                   |
|            | 23.648             | 512.1                 | 1.2                   | 2.1                   |           | 31.956*                        | 852.9                  | -2.4                  | 1.6                   |
| 0.092 45   | 15.723             | 509.0                 | 0.7                   | 3.0                   |           | 43.957                         | 809.0                  | 5.8                   | 1.5                   |
|            | 16.001             | 501.6                 | 6.7                   | 3.0                   |           | 43.957                         | 812.0                  | 2.8                   | 1.5                   |
| 0.048 85   | 8.4845             | 475.3                 | 1.1                   | 3.8                   | 0.918 2   | 56.010                         | 694.0                  | 7.7                   | 2.2                   |
|            | 8.4092             | 480.4                 | -3.4                  | 3.8                   |           | 56.355                         | 696.0                  | 5.0                   | 2.2                   |
| 0.001 168  | 5.831 <sup>b</sup> | 35.4                  | 10.1                  | 3.4                   |           | 30.669                         | 767.0                  | 4.1                   | 2.2                   |
| 0.001 156  | 5.683              | 40.5                  | 5.8                   | 3.4                   |           | 30.980                         | 768.0                  | 2.1                   | 2.2                   |

|                |                                | $-\Delta H_{i,t}$ | Expti - calcd         | σ,                    |           |                    | $-\Delta H_{i,f}$     | Expti - caicd         | σ,                    |
|----------------|--------------------------------|-------------------|-----------------------|-----------------------|-----------|--------------------|-----------------------|-----------------------|-----------------------|
| m              | 10 <sup>4</sup> m <sub>f</sub> | cal mol-1         | cal mol <sup>-1</sup> | cal mol <sup>-1</sup> | m         | 104 m.             | cal mol <sup>-1</sup> | cal mol <sup>-1</sup> | cal mol <sup>-1</sup> |
| 0.700.0        |                                |                   |                       |                       | 2.086     | 10 2 16            | 2152.3                | 0.5                   | 2.5                   |
| 0.733 0        | 30.492                         | 596.0             | 5,4                   | 1.5                   | 2.000     | 38 258+            | 2086.7                | -11                   | 2.5                   |
|                | 30.437                         | 703.0             | -1.4                  | 1.5                   |           | 10 630             | 2060.7                | -0.1                  | 3.4                   |
|                | 25.261                         | 717.0             | 3.7                   | 1.5                   |           | 10.030             | 2130.1                | -0.1                  | 2.4                   |
| 0 550 <b>5</b> | 24.800                         | 732.0             | -9.5                  | 1.5                   | 1 700     | 10 400             | 2000.4                | -0.7                  | 3.3                   |
| 0.552 5        | 38.465                         | 629.0             | 0.5                   | 1.5                   | 1.792     | 19.400             | 1/28.7                | 0.8                   | 2.0                   |
|                | 38.490                         | 632.0             | -2.6                  | 1.5                   |           | 39.588             | 1656.9                | 2.0                   | 2.8                   |
|                | 24.315                         | 680.0             | -2.2                  | 1.5                   |           | 19.070             | 1/31.0                | 0.0                   | 2.0                   |
|                | 24.384                         | 677.0             | 0.5                   | 1.5                   |           | 38.574*            | 1662.6                | -0.9                  | 2.8                   |
| 0.425 6        | 47.665                         | 580.0             | 0.4                   | 1.7                   | 1.680     | 22.096             | 1572.5                | 1.7                   | 2.1                   |
|                | 47.790                         | 582.0             | - 1.9                 | 1.7                   |           | 44.459             | 1499.2                | 3.1                   | 2.8                   |
|                | 32.558                         | 625.0             | -1.3                  | 1.7                   |           | 21.991             | 1579.4                | -4.8                  | 2.1                   |
|                | 32.627                         | 625.0             | -1.6                  | 1.7                   |           | 43.943*            | 1506.6                | -2.9                  | 2.8                   |
| 0.327 5        | 38.143                         | 589.0             | -0.9                  | 1.5                   | 1.456     | 22.059             | 1317.5                | -1.6                  | 1.7                   |
|                | 38.155                         | 589.0             | -0.9                  | 1.5                   |           | 21.831             | 1321.6                | -4.7                  | 1.8                   |
|                | 27.552                         | 621.0             | 1.9                   | 1.5                   |           | 45.171*            | 1242.1                | 0.0                   | 2.4                   |
|                | 27.426                         | 625.0             | -1.6                  | 1.5                   | 1.190     | 23.448             | 1061.9                | -1.9                  | 1.5                   |
| 0.198 2        | 28.228                         | 578.0             | 4.9                   | 1.3                   |           | 46.767*            | 987.7                 | 0.2                   | 2.0                   |
|                | 30.305                         | 580.0             | -4.4                  | 1.3                   |           | 23.619             | 1060.3                | -1.0                  | 1.5                   |
|                | 28.633                         | 582.0             | -0.5                  | 1.3                   |           | 47.036*            | 989.6                 | -2.4                  | 2.0                   |
| 0.113 2        | 14,784                         | 582.0             | 1.7                   | 2.8                   | 1.069     | 26.485             | 952.7                 | 2.2                   | 1.5                   |
|                | 15,265                         | 570.0             | 11.0                  | 2.8                   |           | 52.545*            | 879.7                 | 1.0                   | 2.0                   |
|                | 15.571                         | 575.0             | 4.4                   | 2.8                   |           | 26.601             | 956.4                 | -2.0                  | 1.5                   |
| 0.059 15       | 8.3290                         | 526.0             | 10.1                  | 3.7                   |           | 54.491*            | 875.9                 | 0.5                   | 2.1                   |
|                | 8 3810                         | 535.0             | 0.7                   | 3.7                   | 0.923 9   | 26.664             | 862.4                 | -1.8                  | 1.4                   |
|                | 8 667 1                        | 525.0             | 8.4                   | 37                    |           | 54.708*            | 781.1                 | 1.2                   | 1.8                   |
| 0.001.363      | 6 906 5                        | 50.1              |                       | 33                    |           | 26.269             | 854.6                 | 7.4                   | 1.4                   |
| 0.001.626      | 8.083                          | 57.7              | -4 9                  | 33                    |           | 54.371*            | 773.8                 | 9.2                   | 1.8                   |
| 0.001.618      | 7 958                          | 54.8              | -14                   | 3.0                   | 0.745.8   | 38.423             | 733.2                 | 0.1                   | 1.6                   |
| 0.007.010      | 12 180                         | 62.8              | -5.1                  | 3.3                   |           | 76.227*            | 647.6                 | 3.6                   | 21                    |
| 0.002 307      | 14 609                         | 02.0<br>57.5      | -5.1                  | 4.2                   |           | 37 128             | 740.2                 | -3.1                  | 16                    |
| 0.002 772      | 17.000                         | 57.5              | 1.5                   | 4.8                   |           | 75 236*            | 656.6                 | -37                   | 2.1                   |
| 0.003 344      | 17.497                         | 62.3              | 1.0                   | 4.8                   | 0 588 5   | 40.862             | 671.0                 | -3.0                  | 2.1                   |
| 0.003 351      | 17.082                         | 63.0              | -0.4                  | 4.8                   | 0.000 0   | 40.002             | 674.7                 | -3.0                  | 2.0                   |
| 0.004 141      | 21.013                         | /4./              | -4.1                  | 3.8                   | 0 500 0   | 40.237             | 611.6                 | -4.0                  | 2.0                   |
| 0.004 935      | 24.552                         | 79.0              | -2.5                  | 3.6                   | 0.509 0   | 53.171             | 011.0                 | 4.0                   | 2.3                   |
| 0.004 936      | 24.621                         | 74.2              | 2.0                   | 3.6                   |           | 33.369             | 010.4                 | - 1.3                 | 2.4                   |
| 0.005 787      | 29.692                         | 78.3              | -1.4                  | 3.4                   |           | 34.727             | 005.4                 | 1.8                   | 1.7                   |
| 0.005 805      | 29.724                         | 77.8              | -0.6                  | 3.4                   |           | 37.908             | 656.3                 | -2.1                  | 1.8                   |
| 0.007 482      | 39.075                         | 80.8              | -0.3                  | 2.3                   | 0.402 1   | 41.910             | 617.5                 | -1.8                  | 1.9                   |
| 0.007 467      | 38.900                         | 82.9              | -2.2                  | 2.3                   |           | 46.014             | 603.9                 | 1.2                   | 2.0                   |
| 0.002 443      | 14.907                         | 41.5              | 3.1                   | 2.3                   | 0.244 1   | 31.310             | 599.5                 | 0.6                   | 1.4                   |
| 0.002 428      | 14.846                         | 41.4              | 3.0                   | 2.3                   |           | 32.842             | 596.7                 | -1.5                  | 1.5                   |
| 0 003 242      | 21.884                         | 36.9              | 2.7                   | 2.7                   | 0.163 2   | 23.187             | 586.4                 | 0.1                   | 1.8                   |
| 0.008 930      | 42.107                         | 97.7              | -1.5                  | 2.7                   |           | 24.461             | 577.7                 | 3.7                   | 1.7                   |
| 0.003 196      | 20.967                         | 39.9              | 2.2                   | 1.8                   | 0.104 5   | 16.709             | 556.2                 | 1.7                   | 2.7                   |
| 0.003 214      | 20.702                         | 44.2              | -0.3                  | 1.8                   |           | 16.799             | 555.5                 | 2.0                   | 2.7                   |
|                |                                |                   |                       |                       | 0.040 46  | 6.6273             | 484.5                 | -5.8                  | 4.0                   |
|                | _                              |                   |                       |                       |           | 6.5234             | 483.1                 | -3.5                  | 4.0                   |
|                | Dys                            | prosium Perc      | hiorate               |                       | 0.001 048 | 5.218 <sup>b</sup> | 30.1                  | 13.6                  | 3.6                   |
| 4.602          | 5.2175                         | 7404.8            | 14.1                  | 2.4                   | 0.001 128 | 5.641              | 38.3                  | 6.4                   | 3.5                   |
|                | 10.478*                        | 7374.7            | 0.6                   | 3.3                   | 0.001 180 | 5.929              | 34.4                  | 10.7                  | 3.3                   |
|                | 5.4583                         |                   | <u></u>               |                       | 0.001 209 | 6.075              | 37.1                  | 8.4                   | 3.4                   |
|                | 10.659*                        | 7393.0            | - 19.0                | 2.7                   | 0.002 013 | 10,398             | 47.8                  | 5.0                   | 3.2                   |
| 4.317          | 5.6414                         | 6747.9            | -0.2                  | 2.3                   | 0.001 919 | 9.641              | 48.6                  | 5.2                   | 3.2                   |
|                | 11.280*                        | 6709.6            | -6.5                  | 3.3                   | 0.002 661 | 13.498             | 59.5                  | -0.1                  | 3.6                   |
| 4.044          | 5.9287                         | 6111.8            | 7.8                   | 2.2                   | 0.002 704 | 13.508             | 60.1                  | 0.9                   | 3.6                   |
|                | 11.799*                        | 6077.4            | -2.9                  | 3.1                   | 0.003 224 | 16.039             | 65.3                  | -0.4                  | 3.6                   |
|                | 6.0749                         | 6114.2            | 4.0                   | 2.3                   | 0.003 260 | 16.232             | 65.4                  | -0.3                  | 3.7                   |
|                | 12.087 •                       | 6077.1            | -4.4                  | 3.2                   | 0.003 826 | 19.316             | 65.7                  | 1.5                   | 3.6                   |
| 3.537          | 6.3788                         | 4991.2            | -3.9                  | 1.9                   | 0.003 751 | 18.638             | 67.8                  | 0.4                   | 3.6                   |
|                | 6.2727                         | 4991.7            | -3.4                  | 1.9                   | 0.003 959 | 19.400             | 71.9                  | - 1.3                 | 3.1                   |
| 2.869          | 10.398                         | 3567.7            | 7.9                   | 2.2                   | 0.003 857 | 19.070             | 68.4                  | 0.9                   | 3.0                   |
|                | 20.128*                        | 3519.9            | 3.0                   | 3.0                   | 0.004 446 | 22,096             | 73.2                  | -1.3                  | 3.1                   |
|                | 9.6409                         | 3582.9            | -2.0                  | 2.1                   | 0.004 394 | 21.991             | 72.8                  | -1.8                  | 3.1                   |
|                | 19.186*                        | 3534.2            | -7.1                  | 2.9                   | 0.004 517 | 21.831             | 79.5                  | -4.7                  | 2.6                   |
| 2.561          | 13.498                         | 2980.8            | -1.7                  | 2.4                   | 0.004 677 | 23,448             | 74.2                  | -2 1                  | 22                    |
|                | 26.606*                        | 2921.4            | -1.7                  | 3.3                   | 0.004 704 | 23.619             | 70.7                  | 1.4                   | 2.2                   |
|                | 13.508                         | 2975.0            | 4.1                   | 2.4                   | 0.005 255 | 26.485             | 72.9                  | 1.2                   | 22                    |
|                | 27.039*                        | 2914.8            | 3.3                   | 3.4                   | 0.005 449 | 26 601             | 80.5                  | -24                   | 2.2                   |
| 2.303          | 16.039                         | 2513.4            | 3.1                   | 2.4                   | 0.005 471 | 26 664             | 81.3                  | -30                   | 20                    |
|                | 32.242*                        | 2448.1            | 3.5                   | 3.4                   | 0.005 437 | 26 269             | 80.8                  | -1 R                  | 2.0                   |
|                | 16.232                         | 2516.3            | -0.7                  | 2.5                   | 0.007 623 | 38.423             | 85 7                  | -3.6                  | 2.3                   |
|                | 32.599*                        | 2450.9            | -0.4                  | 3.4                   | 0.007 524 | 37.128             | 83.6                  | 0.5                   | 2.3                   |
|                |                                |                   |                       |                       |           |                    |                       | 0.0                   | 2.0                   |

|         |                                | $-\Delta H_{i,t}$ | Exptl – calcd         | σ,                    |            |                    | $-\Delta H_{i,f}$     | Exptl - calcd         | σ,                    |
|---------|--------------------------------|-------------------|-----------------------|-----------------------|------------|--------------------|-----------------------|-----------------------|-----------------------|
| mi      | 10 <sup>4</sup> m <sub>t</sub> | cal mol-1         | cal mol <sup>-1</sup> | cal mol <sup>-1</sup> | mi         | 104 m <sub>t</sub> | cal mol <sup>-1</sup> | cal mol <sup>-1</sup> | cal mol <sup>-1</sup> |
|         | E                              | rbium Perchk      | orate                 |                       | 0.360 3    | 40.145             | 603.0                 | -4.6                  | 1.7                   |
| 4.627   | 8.8685                         | 7399.3            | 0.1                   | 3.0                   |            | 40.094             | 599.0                 | -0.4                  | 1.7                   |
|         | 17.514*                        | 7338.0            | 10.2                  | 3.6                   |            | 39.980             | 599.0                 | -0.1                  | 1.7                   |
|         | 8.3348                         | 7400.0            | 3.5                   | 3.0                   |            | 39.930             | 600.0                 | -1.0                  | 1.7                   |
|         | 17.156*                        | 7350.0            | -0.1                  | 3.6                   |            | 33.143             | 622.0                 | -3.1                  | 1.7                   |
| 4.215   | 15.817                         | 6396.4            | -4.7                  | 4.8                   |            | 33.109             | 620.0                 | -1.0                  | 1.7                   |
|         | 32.274*                        | 6323.8            | 2.3                   | 5.9                   | 0.230 7    | 6.4567             | 712.7                 | -0.9                  | 2.7                   |
|         | 10.824                         | 6431.7            | -11.0                 | 4.8                   |            | 12.496*            | 666.9                 | 0.7                   | 3.3                   |
|         | 21.716*                        | 6372.1            | -7.7                  | 5.9                   |            | 6.2500             | /1/.1                 | -3.4                  | 2.7                   |
|         | 10.883                         | 6435.2            | - 14.9                | 4.0                   |            | 12.510             | 615.4                 | 2.1                   | 3.3                   |
|         | 23,098                         | 6307.8            |                       | 5.5                   |            | 22.753             | 615.0                 | 2.5                   | 3.1                   |
| 3 413   | 8 6966                         | 4648.9            | -21.0                 | 2.6                   | 0 202 0    | 25.020             | 588.0                 | 0.4                   | 16                    |
| 5.415   | 18 207*                        | 4579.9            | 10.2                  | 3.1                   | 0.202 9    | 19 598             | 621.0                 | -2.6                  | 1.6                   |
|         | 8 6554                         | 4651.2            | -5.0                  | 2.6                   |            | 28.966             | 581.0                 | 0.8                   | 1.6                   |
|         | 18.284*                        | 4575.6            | 14.1                  | 3.1                   | 0 115 4    | 14 646             | 560.0                 | 16.0                  | 2.9                   |
| 3.086   | 9.3086                         | 3963.2            | -4.5                  | 2.9                   | 0,110 1    | 15.801             | 552.0                 | 17.9                  | 2.9                   |
|         | 20.458*                        | 3880.7            | 16.6                  | 3.5                   | 0.001 716  | 8.335 <sup>b</sup> | 50.0                  | 3.6                   | 4.0                   |
|         | 9,1930                         | 3956.2            | 3.4                   | 2.9                   | 0.001 751  | 8.868              | 61.3                  | - 10.1                | 4.0                   |
|         | 19.272*                        | 3890.6            | 11.9                  | 3.5                   | 0.002 310  | 10.883             | 67.4                  | -5.8                  | 6.5                   |
|         | 9.2294                         | 3965.0            | -5.7                  | 3.3                   | 0,002 172  | 10.824             | 59.6                  | -3.3                  | 6.5                   |
|         | 14.493                         | 3929.4            | -3.2                  | 2.9                   | 0.003 227  | 15.817             | 72.6                  | -7.0                  | 6.5                   |
|         | 28.794*                        | 3865.8            | -0.7                  | 3.5                   | 0.001 828  | 8.655              | 75.6                  | - 19.1                | 3.5                   |
|         | 14.432                         | 3925.3            | 1.3                   | 2.9                   | 0.001 821  | 8.697              | 69.0                  | <del></del> 13.2      | 3.5                   |
|         | 29.074*                        | 3867.6            | -3.5                  | 3.5                   | 0.002 907  | 14.432             | 57.7                  | 4.7                   | 3.9                   |
| 2.676   | 16.540                         | 3113.7            | 0.9                   | 3.1                   | 0.002 879  | 14.493             | 63.6                  | -2.5                  | 3.9                   |
|         | 33.397*                        | 3043.8            | 5.4                   | 3.8                   | 0.001 927  | 9.193              | 65.6                  | -8.6                  | 3.9                   |
|         | 16.557                         | 3117.7            | -3.1                  | 3,1                   | 0.002 046  | 9.309              | 82.5                  | -21.0                 | 3.9                   |
|         | 33.281*                        | 3052.0            | -2.5                  | 3.8                   | 0.003 328  | 16.557             | 65.7                  | -0.7                  | 4.2                   |
| 2.358   | 36.518                         | 2468.5            | 3.8                   | 4.0                   | 0.003 340  | 16.540             | 69.9                  | -4.4                  | 4.2                   |
|         | 08.140                         | 2392.9            | 0.9                   | 5.9                   | 0.006 810  | 30.724             | 75.6                  | -0.0                  | 6.6                   |
|         | 50.724<br>68.096*              | 2409.0            | 8.1                   | 59                    | 0.006 8 15 | 30.5 10<br>40 196  | 75.0                  | -3.2                  | 6.0                   |
| 2 033   | 39 930                         | 1957.2            | 14 4                  | 44                    | 0.007 900  | 39 930             | 82.5                  | -0.9                  | 6.0                   |
| 2.000   | 78 925*                        | 1874 7            | -13.5                 | 5.4                   | 0.007 090  | 32 753             | 89.6                  | -7.3                  | 3.9                   |
|         | 40.196                         | 1959.4            | - 17.3                | 4.4                   | 0.006.719  | 32,501             | 82.4                  | 0.5                   | 3.9                   |
|         | 78.997*                        | 1875.2            | -14.1                 | 5.4                   | 0.009 197  | 44.316             | 95.3                  | -5.0                  | 4.3                   |
| 1.700   | 32,501                         | 1508.3            | -0.7                  | 2.9                   | 0.009 264  | 44,409             | 94.0                  | -3.0                  | 4.3                   |
|         | 67,191*                        | 1425.9            | - 1.2                 | 3.5                   | 0.011 41   | 53.978             | 101.0                 | -3.9                  | 4.0                   |
|         | 32.753                         | 1508.3            | - 1.5                 | 2.9                   | 0.011 54   | 53.802             | 102.3                 | -3.1                  | 4.0                   |
|         | 67.273*                        | 1418.7            | 5.9                   | 3.5                   | 0.001 251  | 6.250              | 51.7                  | -5.5                  | 3.6                   |
| 1.498   | 44.409                         | 1243.5            | -4.0                  | 3.2                   | 0.001 250  | 6.457              | 45.8                  | -1.6                  | 3.6                   |
|         | 92.641*                        | 1149.5            | -1.0                  | 3.9                   |            | Li                 | utetium Perch         | lorate                |                       |
|         | 44.316                         | 1244.3            | -4.5                  | 3.2                   | 4.634      | 11.096             | 7233.1                | -4.4                  | 4.7                   |
|         | 91.968*                        | 1149.0            | 0.5                   | 3.9                   |            | 21.874*            | 7175.9                | -2.6                  | 5.8                   |
| 1.227   | 53.978                         |                   |                       |                       |            | 11.062             | 7229.0                | -0.1                  | 4.7                   |
|         | 114.426*                       | 867.7             | -6.6                  | 3.3                   | 4 000      | 22.212*            | 7166.4                | 5.5                   | 5.8                   |
|         | 53.802                         | 956.7             | 2.3                   | 3.0                   | 4.039      | 14.3 19            | 5851.2                | -0.7                  | 5.1                   |
|         | 115.434°                       | 004.4             | -29                   | 3.7                   |            | 29.225             | 5772.5                | 12.3                  | 5.1                   |
|         | 114 105*                       | 901.0<br>860.6    | 2.9                   | 3.7                   |            | 30 714*            | 5759.0                | 16.8                  | 6.3                   |
|         | 53 451                         | 960.0             | -0.2                  | 3.4                   | 3,567      | 12.076             | 4829.5                | - 12.3                | 3.7                   |
| 1.055   | 59 0 13                        | 815.0             | 4.3                   | 3.6                   | 0.001      | 26.657*            | 4753.1                | -3.7                  | 4.5                   |
|         | 56.912                         | 820.0             | 3.7                   | 3.6                   |            | 12.795             | 4815.9                | -3.1                  | 3.7                   |
|         | 57.093                         | 825.0             | -1.7                  | 3.6                   |            | 24.621*            | 4760.6                | -3.5                  | 4.5                   |
|         | 57.851                         | 819.0             | 2.7                   | 3.6                   | 3.196      | 12.681             | 4045.3                | <del>-</del> 11.0     | 3.1                   |
|         | 76.668                         | 781.0             | 5.5                   | 3.6                   |            | 24.493*            | 3985.1                | -6.7                  | 3.8                   |
|         | 76.825                         | 782.0             | 4.3                   | 3.6                   |            | 14.799             | 4013.5                | 8.8                   | 3.1                   |
| 0.840 8 | 80.407                         | 653.0             | 6.1                   | 3.2                   |            | 27.479*            | 3963.4                | 3.9                   | 3.8                   |
|         | 79.959                         | 656.0             | 3.8                   | 3.2                   | 2.870      | 11.202             | 3392.0                | 4.7                   | 2.8                   |
|         | 59.413                         | 697.0             | 0.2                   | 3.2                   |            | 12.027             | 3386.9                | 4.5                   | 2.4                   |
|         | 59.614                         | 692.0             | 4.8                   | 3.2                   | 0 5 0 0    | 24.671*            | 3327.3                | 3.5                   | 3.0                   |
|         | 59.506                         | 696.0             | 1.1                   | 3.2                   | 2.529      | 20.867             | 27 13.7               | 4.3                   | 3.0                   |
| 0.662 6 | 35.402                         | 001.U<br>697.0    | 5.3<br>_0.9           | 2.1                   |            | 18 250             | 2000.9                | 5.0                   | J.Z                   |
|         | 30.420                         | 007.0             | -0.0<br>              | 2.1                   |            | 36 132*            | 2663.0                | 1.2                   | 3.9                   |
|         | 61.450                         | 618.0             | 5.3                   | 2.1                   | 2,232      | 16.941             | 2236.3                | 2.0                   | 2.5                   |
|         | 61.450                         | 620.0             | 3.3                   | 2.1                   |            | 31.764*            | 2178.9                | 1.0                   | 3.0                   |
| 0.512 9 | 32.879                         | 651.0             | 2.2                   | 1.6                   | 1.980      | 17.181             | 1863.7                | -6.1                  | 1.6                   |
|         | 32.696                         | 656.0             | -2.2                  | 1.6                   |            | 35.713*            | 1791.3                | -3.1                  | 1.9                   |
|         | 32.684                         | 655.0             | -1.2                  | 1.6                   |            | 17.741             | -                     | _                     | -                     |
|         | 32.971                         | 656.0             | -3.1                  | 1.6                   |            | 35.617*            | 1790.7                | -2.3                  | 1.7                   |

| m <sub>i</sub> | 10 <sup>4</sup> m <sub>t</sub> | $-\Delta H_{i,f}$ , cal mol <sup>-1</sup> | Exptl — calcd<br>cal mol <sup>-1</sup> | σ,<br>cal mol <sup>-1</sup> | m <sub>i</sub> | 104 <i>m</i> f             | –∠ <i>H</i> i,f,<br>cal mol <sup>−1</sup> | Exptl — calcd<br>cal mol <sup>-1</sup> | σ,<br>cal mol <sup>-1</sup> |
|----------------|--------------------------------|-------------------------------------------|----------------------------------------|-----------------------------|----------------|----------------------------|-------------------------------------------|----------------------------------------|-----------------------------|
| 1.676          | 23,561                         | 1431.6                                    | 0.7                                    | 2.0                         | 0.154 6        | 9.3269                     | 635.0                                     | -0.6                                   | 3.5                         |
|                | 47,458*                        | 1358.3                                    | 1.2                                    | 2.4                         |                | 8.8209                     | 633.0                                     | 5.1                                    | 3.5                         |
|                | 22.307                         | 1436.3                                    | 1.1                                    | 2.0                         | 0.098 80       | 5.7696                     | 603.0                                     | 8.0                                    | 3.9                         |
|                | 46.690*                        | 1359.0                                    | 2.4                                    | 2.4                         |                | 6.3706                     | 601.0                                     | 4.2                                    | 3.9                         |
| 1.432          | 27.741                         | 1152.8                                    | -1.0                                   | 1.9                         | 0.067 17       | 5.7360                     | 560.0                                     | -2.5                                   | 10.0                        |
|                | 55.249*                        | 1074.4                                    | 2.4                                    | 2.3                         |                | 4.9640                     | 570.0                                     | -4.6                                   | 10.0                        |
|                | 26,988                         | 1153.7                                    | 0.8                                    | 1.9                         | 0.009 869      | 0.9187                     | 363.0                                     | -20.4                                  | 10.0                        |
|                | 56.355*                        | 1069.9                                    | 4.6                                    | 2.3                         | 0.002 221      | 11.062                     | 62.6                                      | -5.6                                   | 6.4                         |
| 1 174          | 35 653                         | 902.6                                     | 1.0                                    | 17                          | 0.002 187      | 11.096 <i><sup>b</sup></i> | 57.2                                      | - 1.9                                  | 6.4                         |
| 1.174          | 64 600*                        | 902.0                                     | 3.5                                    | 21                          | 0.003 071      | 14.992                     | 69.6                                      | -4.6                                   | 7.0                         |
|                | 32 024                         | 014 3                                     | 0.5                                    | 2.1                         | 0.002 922      | 14.319                     | 78.9                                      | -15.2                                  | 7.0                         |
|                | 52.024                         | 514.5                                     | 0.5                                    | 2.0                         | 0.002 462      | 12.795                     | 55.3                                      | 0.5                                    | 5.0                         |
| 1.006          | 36.216                         | 792.5                                     | -2.1                                   | 1.6                         | 0.002 666      | 12.076                     | 76.4                                      | -8.7                                   | 5.0                         |
|                | 69.789*                        | 713.1                                     | 0.8                                    | 1.9                         | 0.002 748      | 14.799                     | 50.1                                      | 4.9                                    | 4.2                         |
|                | 36.192                         | 792.4                                     | -2.0                                   | 1.6                         | 0.002 449      | 12.681                     | 60.2                                      | -4.2                                   | 4.2                         |
|                | 71.944*                        | 709.1                                     | 1.0                                    | 1.9                         | 0.002 467      | 12.027                     | 59.6                                      | 1.0                                    | 3.3                         |
| 0.806 8        | 54.716                         | 645.0                                     | 0.9                                    | 2.5                         | 0.003 839      | 20.867                     | 59.8                                      | 0.5                                    | 3.6                         |
|                | 53.832                         | 648.0                                     | -0.2                                   | 2.5                         | 0.003 176      | 16.941                     | 57.4                                      | 1.0                                    | 3.3                         |
| 0.640 9        | 51.251                         | 595.0                                     | 3.9                                    | 2.2                         | 0.003 571      | 17.181                     | 72.4                                      | -2.9                                   | 2.1                         |
|                | 50.623                         | 599.0                                     | 1.3                                    | 2.2                         | 0.004 669      | 22.307                     | 77.3                                      | -1.3                                   | 2.7                         |
| 0.494 4        | 36.084                         | 609.0                                     | -2.8                                   | 1.6                         | 0.004 746      | 23.561                     | 73.3                                      | -0.5                                   | 2.7                         |
|                | 37.259                         | 607.0                                     | -4.2                                   | 1.6                         | 0.005 636      | 26.988                     | 83.8                                      | -3.7                                   | 2.5                         |
| 0.358 6        | 26.615                         | 614.0                                     | 0.5                                    | 1.3                         | 0.005 525      | 27.741                     | 78.4                                      | -3.4                                   | 2.5                         |
|                | 27.783                         | 610.0                                     | 0.3                                    | 1.3                         | 0.006 461      | 35.653                     | 71.0                                      | -2.6                                   | 2.3                         |
| 0.249 6        | 11.683                         | 656.0                                     | 4.9                                    | 2.9                         | 0.007 194      | 36.192                     | 83.3                                      | -2.9                                   | 2.1                         |
|                | 13.690                         | 650.0                                     | - 1.1                                  | 2.9                         | 0.006 979      | 36.216                     | 79.4                                      | -3.0                                   | 2.1                         |

<sup>a</sup> For a starred sample f = 3 and its corresponding f = 2 value (unstarred) is given immediately above. <sup>b</sup> For each salt, all entries above this point are  $\Delta H_{1,2}$  or  $\Delta H_{1,3}$  values, the rest are  $\Delta H_{3,2}$  values.

| Table II. Heats of Solution | of Some Rare | Earth Perchlorate | Hydrates at 25 | °C |
|-----------------------------|--------------|-------------------|----------------|----|
|-----------------------------|--------------|-------------------|----------------|----|

| Hydrate                                               | 10 <sup>4</sup> m <sub>f</sub> | $-\Delta H_{x,b}$ cal mol <sup>-1</sup> | $\phi_{L}(m_{\rm f})$ cal mol <sup>-1</sup> | Lَ <sup>.</sup> ,<br>cal mol |
|-------------------------------------------------------|--------------------------------|-----------------------------------------|---------------------------------------------|------------------------------|
| La(CIO <sub>4</sub> ) <sub>3</sub> •8H <sub>2</sub> O | 5.693                          | 9 305.4                                 | 145.2                                       | 9450.6                       |
|                                                       | 12.454* <sup>a</sup>           | 9 239.3                                 | 203.0                                       | 9442.3                       |
|                                                       | 5.741                          | 9 258.5                                 | 145.7                                       | 9404.2                       |
|                                                       | 11.861*                        | 9 207.9                                 | 198.9                                       | 9406.8                       |
|                                                       |                                |                                         | Average                                     | 9426 ± 21                    |
| Nd(CIO <sub>4</sub> ) <sub>3</sub> •8H <sub>2</sub> O | 6.061                          | 9 304.7                                 | 134.7                                       | 9439.4                       |
| _                                                     | 15.155*                        | 9 232.5                                 | 198.3                                       | 9430.8                       |
|                                                       | 8.952                          | 9 239.6                                 | 159.2                                       | 9398.8                       |
|                                                       | 14.123*                        | 9 201.1                                 | 192.6                                       | 9393.7                       |
|                                                       |                                |                                         | Average                                     | 9416 ± 20                    |
| Gd(CIO <sub>4</sub> ) <sub>3</sub> •8H <sub>2</sub> O | 8.439                          | 10 068.4                                | 157.0                                       | 10225.4                      |
|                                                       | 11.951*                        | 10 054.8                                | 182.0                                       | 10236.8                      |
|                                                       | 6.381                          | 10 135.9                                | 139.2                                       | 10275.1                      |
|                                                       | 13.727*                        | 10 067 2                                | 192.9                                       | 10260.1                      |
|                                                       |                                |                                         | Average                                     | 10249 ± 19                   |
| Er(ClO <sub>4</sub> ) <sub>3</sub> -8H <sub>2</sub> O | 3.667                          | 13 333.3                                | 107.4                                       | 13440.7                      |
|                                                       | 2.088                          | 13 306.8                                | 83.6                                        | 13390.4                      |
|                                                       |                                |                                         | Average                                     | $13416 \pm 26$               |

<sup>a</sup> For a starred sample f = 3 and its corresponding f = 2 value (unstarred) is given immediately above.

limiting law power in molality. Third, approximately equally good fits were obtained whether  $A_1$  was fixed at the limiting slope, 6990 (3), or allowed to vary. Therefore  $A_1$  was fixed at the limiting law value. Fourth, all the possible fits with combinations of six multiples of  $m^{1/4}$  between  $m^{3/4}$  and  $m^{16/4}$  were performed. The final powers were chosen from those fits with low reduced  $\chi^2$  values, subject to the constraint that adjacent rare earth perchlorates should have similar sets of powers as far as possible.

It should be pointed out that the coefficients in eq 13 cannot be determined using standard least-squares programs, since there are two independent variables,  $m_i$  and  $m_i$ ; specifically, the independent variable terms are not  $(\Delta m)^{p_i}$ . However, linear least-squares regression analysis can still be used if the two independent variables are incorporated into the matrix building steps.

The advantages of the present method of data treatment are twofold. First, the two-step  $\overline{P_i}$  analysis is reduced to a simple and direct one-step fit of the measured  $\Delta H$  values. Second, the whole data set is fitted to one least-squares equation, avoiding discontinuities in  $\phi_{\rm L}$  and derived quantities which occur when the data set is fitted in segments. These advantages depend on the existence of empirical equations that are capable of fitting the data within the statistical errors in the data, in addition to extrapolating to zero concentration correctly. Even if such equations cannot be found, the  $\overline{P_i}$  fit, eq 10, can still be replaced

| Salt <sup>a</sup>                  | Р2<br>Аз    | <b>Р</b> 3<br>Аз | Р4<br>Ал      | $\rho_5$     | <i>р</i> 6<br>Ас | р <sub>7</sub><br>Ал |
|------------------------------------|-------------|------------------|---------------|--------------|------------------|----------------------|
|                                    |             |                  |               |              |                  |                      |
|                                    | 1.00        | 1.25             | 1.50          | 1.75         | 2.75             | 4.00                 |
| La(CIO <sub>4</sub> ) <sub>3</sub> | -53 930.420 | 119 602.8009     | -110 785.3187 | 39 847.259 9 | -849.299 91      | 17.608 558           |
|                                    | 0.75        | 1.25             | 2.00          | 3.25         | 3.75             | 4.00                 |
| Pr(ClO <sub>4</sub> ) <sub>3</sub> | -9 866.816  | 4 762.0196       | -1 736.5413   | 1 487.968 31 | -1 465.468 192   | 587.561 198          |
|                                    | 0.75        | 1.25             | 2.00          | 3.25         | 3.75             | 4.00                 |
| Nd(CIO <sub>4</sub> ) <sub>3</sub> | -9 789.311  | 4 543.8264       | -1 569.9242   | 1 354.352 59 | -1 330.857 723   | 532.680 189          |
|                                    | 0.75        | 1.25             | 2.00          | 3.25         | 3.75             | 4.00                 |
| Sm(ClO <sub>4</sub> ) <sub>3</sub> | -9 804.321  | 4 781.3713       | -1 733.9837   | 1 417.622 61 | -1 387.953 071   | 555.814 673          |
|                                    | 0.75        | 1.25             | 2.00          | 3.25         | 3.75             | 4.00                 |
| Gd(CIO <sub>4</sub> ) <sub>3</sub> | -9 422.495  | 4 341.3987       | -1 245.6835   | 1 005.995 37 | -985.614 470     | 394.371 910          |
|                                    | 0.75        | 1.25             | 2.00          | 2.25         | 2.50             | 2.75                 |
| Dy(CIO <sub>4</sub> ) <sub>3</sub> | -9 989.583  | 7 097.0994       | -20 609.1495  | 32 196.835 6 | -18 034,138 58   | 3504.302 75          |
|                                    | 0.75        | 1.25             | 2.00          | 2.25         | 2.50             | 2.75                 |
| Er(ClO <sub>4</sub> ) <sub>3</sub> | -10 126.464 | 7 609.3830       | -23 931.1872  | 37 654.248 2 | -21 236.443 33   | 4157.844 04          |
|                                    | 0.75        | 1.25             | 2.00          | 2.25         | 2.50             | 2.75                 |
| Lu(CIO <sub>4</sub> ) <sub>3</sub> | -10 064.327 | 7 102.3011       | -20 755.8581  | 32 350.593 8 | -18 042.102 01   | 3484.477 10          |

 ${}^{a}\rho_{1} = 0.50, A_{1} = 6990.00$  for all saits.



Figure 3. Relative apparent molal heat content of some aqueous rare earth perchlorates: from eq 11; DHLL, Debye-Hückel limiting law.

by the  $\Delta H$  fit, eq 13, where the  $\Delta H_{i,t}$  values are restricted to the "short chords",  $\Delta H_{3,2}$ . This avoids the error introduced by the approximation to the derivative, indicated in eq 10.

The relative partial molal heat contents of the solute,  $L_2$ , and the solvent,  $\overline{L}_1$ , were calculated from

$$\overline{L}_{2} = \phi_{L} + m \left(\frac{\partial \phi_{L}}{\partial m}\right)_{\mathrm{T},\mathrm{P},\mathrm{n}_{1}}$$
(14)

$$\overline{L}_{1} = \frac{-M_{1}m^{2}}{1000} \left(\frac{\partial\phi_{L}}{\partial m}\right)_{T,P,n_{1}}$$
(15)

where  $M_1$  is the molecular weight of water, 18.0154 g mol<sup>-1</sup>. Graphs of  $\phi_L$ ,  $L_2$ , and  $L_1$  for representative rare earths are shown in Figures 3, 4, and 5.

The heats of solution to infinite dilution fo the rare earth perchlorate octahydrates, -L, were calculated from eq 7 and 8, using  $\Delta H_{x,f}$  from Table II and with  $\phi_{L}(m_2)$  and  $\phi_{L}(m_3)$  calculated from eq 11. The L are listed in Table II.



Figure 4. Relative partial molal heat content of some aqueous rare earth perchlorates: from eq 11; DHLL, Debye-Hückel limiting law.

**Errors.** Random errors in the heat measurements were found to be correlated with the actual heat evolved during a run, *q*. The standard deviation expected for each  $\Delta H$  measurement,  $\sigma$ , based on the heat evolved, *q*, is listed in the fifth column in Table I. These standard deviations in  $\Delta H$  ranged from  $\sigma = 10$  cal mol<sup>-1</sup> for the very few runs where *q* was less than 0.3 cal, to an optimum of about  $\sigma = 1$  cal mol<sup>-1</sup> at q = 1.5 cal, and rising to  $\sigma = 4.5$  cal mol<sup>-1</sup> at q = 6 cal. These standard deviations were used to obtain weighting factors,  $1/\sigma^2$ , for the  $\Delta H$  fits. The standard deviation of the least-squares fits of  $\Delta H$  ranged from 4 to 6 cal mol<sup>-1</sup>. These standard deviations of the fits compare favorably with the standard deviations of the experimental  $\Delta H$  values, and indicate that the systematic deviations of the experimental  $\Delta H$  values from the equations were very small.

In order to determine the propagation of the random errors,  $\sigma$ , in  $\Delta H$ , to the derived quantities  $\phi_{L}$ ,  $\overline{L}_1$ , and  $\overline{L}_2$ , a random variable technique was used (3). In Table IV we list  $\phi_{L}$ ,  $(d\phi_{L}/d\phi_{L})$ 

| Table 14. Then touthannic Frudenies and citurs for Latervals Solutions at 20 |
|------------------------------------------------------------------------------|
|------------------------------------------------------------------------------|

| -         |                                 |                                                 |                                        |                                          |
|-----------|---------------------------------|-------------------------------------------------|----------------------------------------|------------------------------------------|
| Molality  | $\phi_{ m L}$ , cal mol $^{-1}$ | $\mathrm{d}\phi_{\mathrm{L}}/\mathrm{d}m^{1/2}$ | $-\tilde{L}_1$ , cal mol <sup>-1</sup> | $\overline{L}_2$ , cal mol <sup>-1</sup> |
| 0.001 794 | 235.7 ± 5.1                     | 4 483.2 ± 39.9                                  | 0.003 07 ± 0.000 03                    | 330.6 ± 5.2                              |
| 0.002 625 | 273.9 ± 5.4                     | 4 141.8 ± 33.4                                  | 0.005 02 ± 0.000 04                    | $380.0 \pm 5.5$                          |
| 0.003 678 | 311.4 ± 3.5                     | 3 818.2 ± 27.5                                  | 0.007 67 ± 0.000 06                    | 427.2 ± 3.6                              |
| 0.005 011 | $348.5 \pm 8.2$                 | 3 506.7 ± 22.3                                  | 0.011 20 ± 0.000 07                    | 472.6 ± 8.2                              |
| 0.006 410 | 379.8 ± 2.4                     | 3 250.6 ± 18.2                                  | 0.015 03 ± 0.000 08                    | $509.9 \pm 2.5$                          |
| 0.009 061 | 426.1 ± 2.8                     | 2 882.5 ± 13.1                                  | 0.022 39 ± 0.000 10                    | $563.3 \pm 2.9$                          |
| 0.010 27  | 443.4 ± 10.0                    | 2 748.0 ± 11.5                                  | 0.025 76 ± 0.000 11                    | 582.7 ± 10.0                             |
| 0.039 91  | 636.2 ± 10.0                    | 1 361.1 ± 9.0                                   | 0.097 75 ± 0.000 64                    | 772.1 ± 10.0                             |
| 0.089 12  | 735.0 ± 3.7                     | 712.7 ± 7.6                                     | 0.170 8 ± 0.001 8                      | 841.4 ± 3.9                              |
| 0.161 1   | 787.7 ± 3.2                     | 345.9 ± 4.9                                     | 0.201 5 ± 0.002 8                      | 857.1 ± 3.4                              |
| 0.250 0   | 810.6 ± 2.7                     | $134.4 \pm 4.6$                                 | 0.151 4 ± 0.005 2                      | 844.2 ± 2.9                              |
| 0.350 4   | 817.2 ± 1.8                     | 22.8 ± 4.9                                      | 0.042 6 ± 0.009 2                      | 823.9 ± 2.3                              |
| 0.493 9   | 817.2 ± 1.6                     | $0.1 \pm 4.5$                                   | $0.000 \pm 0.014$                      | 817.3 ± 2.2                              |
| 0.644 8   | 821.3 ± 1.3                     | 103.4 ± 3.7                                     | 0.482 ± 0.017                          | 862.9 ± 2.0                              |
| 0.816 7   | 842.7 ± 1.3                     | 344.9 ± 3.1                                     | $2.293 \pm 0.020$                      | 998.5 ± 1.9                              |
| 1.005     | 894.4 ± 1.7                     | 726.8 ± 2.8                                     | 6.596 ± 0.025                          | 1 258.7 ± 2.2                            |
| 1.176     | 970.8 ± 1.7                     | 1 153.3 ± 2.6                                   | 13.248 ± 0.029                         | 1 596.1 ± 2.2                            |
| 1.465     | $1166.5 \pm 2.3$                | 1 988.2 ± 2.4                                   | 31.756 ± 0.039                         | 2 369.7 ± 2.8                            |
| 1.733     | $1421.1 \pm 2.3$                | $2831.3 \pm 2.8$                                | 58.184 ± 0.057                         | 3 284.7 ± 2.9                            |
| 1.982     | $1716.0 \pm 2.4$                | $3630.5 \pm 3.2$                                | 91.252 ± 0.081                         | $4251.6 \pm 3.3$                         |
| 2.238     | 2071.5 ± 3.0                    | $4437.6\pm3.4$                                  | 133.83 ± 0.10                          | $5390.8\pm4.0$                           |
| 2.565     | 2591.6 ± 2.9                    | $5415 \pm 3.3$                                  | $200.39 \pm 0.12$                      | $6928.1 \pm 3.9$                         |
| 2.902     | 3191.1 ± 3.2                    | 6 338.7 ± 3.8                                   | 282.27 ± 0.17                          | 8 590.2 ± 4.6                            |
| 3.255     | 3873.3 ± 3.0                    | 7 210.6 ± 5.4                                   | 381.43 ± 0.29                          | 10 377.8 ± 5.7                           |
| 3.581     | 4541.7 ± 6.7                    | 7 944.0 ± 6.4                                   | 484.91 ± 0.39                          | $12058.1\pm9.1$                          |
| 4.093     | $5651.0 \pm 4.4$                | 9 032.3 ± 6.2                                   | $673.72 \pm 0.46$                      | 14 787.8 ± 7.7                           |
| 4.465     | 6499.8 ± 3.1                    | 9 861.9 ± 15.6                                  | 838.1 ± 1.3                            | 16 919.1 ± 16.8                          |
| 4.791     | $7277.6 \pm 4.2$                | 10 693.6 ± 35.8                                 | $1010.1 \pm 3.4$                       | 18 980.9 + 39.4                          |





Sm Gd Dy Er

Figure 5. Relative partial molal heat content of water in some aqueous rare earth perchlorates, from eq 11.

Figure 6. Relative apparent molal heat content of some aqueous rare earth perchlorates, from eq 11.

 $dm^{1/2}$ ),  $\overline{L}_1$ , and  $\overline{L}_2$  for La(ClO<sub>4</sub>)<sub>3</sub> as calculated fom eq 11, 14, and 15, together with the standard deviations expected in these quantities. The random errors in  $\phi_L$  are equal to the random errors in  $\Delta H$  for the same concentration. Even though the errors in  $\phi_L$  are rather uniform over the whole concentration range, the errors for the derivative of  $\phi_L$  increase at both ends of the data set. This reflects the fact that the equation is not constrained as well at the endpoints as in the center of the data set.

In addition to the above random errors, the following systematic errors should be noted. The possible error in the calorimeter calibration is about 0.2% in  $\Delta H$  (and  $\phi_L$ ), which amounts to at most 20 cal. The error due to 0.1% error in the concentration of the solutions ranges from being negligible at low

concentrations, to 10 cal at the highest concentrations. From a comparison of the results from the  $P_i$  analysis and the results of various  $\Delta H$  fits tried, we feel the extrapolation to infinite dilution results in a possible error of at most 10 cal in  $\phi_L$ . In summary, the errors in  $\phi_L$ ,  $\overline{L}_2$ , and  $\overline{L}_1$  should be as indicated in Table IV for La(ClO<sub>4</sub>)<sub>3</sub> with the addition of the above possible systematic errors.

The  $\phi_L$  values for La(ClO<sub>4</sub>)<sub>3</sub> reported by Vanderzee and Nutter (*19*) are systematically larger than those reported here, the difference increasing to approximately 18 cal. This difference is well within the estimated errors of either data set.



Figure 7. Relative partial molal heat content of some aqueous rare earth perchlorates, from eq 11.

# Discussion

The general shape of the  $\phi_{L}$  and  $\overline{L}_{2}$  curves is typical of  $\phi_{L}$  and  $\overline{L}_2$  curves for "normal salts" such as the alkali, alkaline earth, and transition element perchlorates (20). As was the case for the dilute solution studies of the rare earth chloride and nitrate solutions (11, 13), the rare earth perchlorates approach the Debye-Hückel theoretical behavior in dilute solutions. This was also found by Vanderzee and Nutter for La(CIO<sub>4</sub>)<sub>3</sub> (19). Between approximately 0.1 and 1 m the  $\phi_1$  curves go through a pronounced inflection point which is also evident for other perchlorate solutions, although the inflection points occur at higher concentrations for the monovalent and divalent perchlorates. Above 1 *m* the  $\phi_1$  curves rise rapidly to very high values, typical of strongly hydrated ions. When the rare earth perchlorates,  $Ca(CIO_4)_2$  (20) and  $NaCIO_4$  (20), are plotted on the same graph, the rare earth salts fall about where one would expect them with respect to charge and size of the rare earth ions as a group.

 $\phi_L$ ,  $L_2$ , and  $L_1$  are plotted at even molalities across the rare earth series in Figures 6, 7, and 8, respectively.  $\phi_1$  and  $L_2$  decrease from La to about Nd, then increase to around Gd-Dy and then decrease again for the rest of the series. This behavior has also been observed in the heat properties of the rare earth chlorides in dilute solutions (11, 13), the partial molal volume properties of the rare earth chlorides (15), perchlorates (17), and nitrates (16), and the expansibilities of the rare earth chlorides (4). The displacement of these properties in the middle of the rare earth series has been attributed to changes in the inner and outer hydration spheres, caused by a decrease in the number of waters in the inner hydration sphere of the rare earth cations (14). Owing to the decreasing size of the rare earth ion, the inner sphere water coordination of Tb to Lu is thought to be lower than the inner sphere water coordination of La to Nd by one water molecule. The ions between Nd and Tb have mixtures of the higher and lower water coordination. The position of the hydration change in the rare earth series at infinite dilution or in very dilute solutions has invariably been between Nd and Tb. At the lowest concentration shown for  $\phi_L$ ,  $L_2$ , and  $L_1$  the position of the break is near these two ions for the rare earth perchlorates.

The fact that the break in the series remains evident over most of the concentration range indicates that the rare earth ions do not form inner sphere rare earth perchlorate complexes, in agreement with commonly held views. However, it does not of



Figure 8. Relative partial molal heat content of water in some aqueous rare earth perchlorates, from eg 11.

course rule out outer sphere ion pairing. The leveling out of  $L_2$ at 4.6 m across the series does appear to be real, since this behavior also occurs in the partial molal volumes of the rare earth perchlorates (17). This leveling out at 4.6 m in  $L_2$  does not appear in  $\phi_{L}$  and points out that the partial molal property often gives information not present in the apparent molal property, particularly at high concentrations.

From graphs of  $\phi_{\rm L}$  for the alkali and alkaline earth halides and perchlorates (20) it becomes immediately evident that  $\phi_{\rm L}$  decreases guite regularly with increasing ion size for a common cation or anion series.  $\phi_{\rm L}$  also increases with cation charge for a given cation size. This relationship holds over the whole concentration range for all the salts, and has been quantified for dilute solutions in the case of monovalent and divalent halides by Leung and Millero (6). The rare earth perchlorate values fall above the divalent and monovalent perchlorates of similar cation size (i.e., Ca(ClO<sub>4</sub>)<sub>2</sub> and NaClO<sub>4</sub>), as expected. However, from Figure 6 it is clear that the  $\phi_{L}$ -cation size relationship within the rare earth series does not hold for the rare earth perchlorates. since, for a given inner sphere hydration series,  $\phi_{\rm L}$  decreases with decreasing cation size. Whether this anomaly holds for all trivalent salt solutions will have to await  $\phi_{L}$  measurements for smaller and larger trivalent cations than the rare earths.

#### Acknowledgment

The authors thank the Ames Laboratory Rare Earth Separation Group for furnishing the oxides. They also wish to thank J. A. Rard for helpful suggestions.

#### Literature Cited

- Bevington, P. R., "Data Reduction and Error Analysis for the Physical (1)Sciences'', McGraw-Hill, New York, N.Y., 1969
- (2) DeKock, C. W., Ph.D. Dissertation, Iowa State University, Ames, Iowa, 1965.
- (3) Derer, J. L., Ph.D. Dissertation, Iowa State University, Ames, Iowa, 1974
- Habenschuss, A., Spedding, F. H., *J. Chem. Eng. Data*, **21**, 95 (1976). Hepler, L. G., Woolley, E. M., "Water, a Comprehensive Treatise", V 3, F. Franks, Ed., Plenum Press, New York-London, 1973, p 149. Leung, W. H., Millero, F. J., *J. Chem. Thermodyn.*, **7**, 1067 (1975). '. Vol. (5)
- (6)
- Mohs, M. A., Ph.D. Dissertation, Iowa State University, Ames, Iowa, (7)1970
- Rard, J. A., Spedding, F. H., J. Phys. Chem., 79, 257 (1975). (8)
- (9) Robinson, A. L., Wallace, W. E., J. Am. Chem. Soc., 63, 1582 (1941).

- (10) Spedding, F. H., Baker, J. L., Walters, J. P., J. Chem. Eng. Data, 20, 189 (1975)
- (11) Spedding, F. H., Csejka, D. A., DeKock, C. W., J. Phys. Chem., 70, 2423 (1966)
- (12) Spedding, F. H., Cullen, P. F., Habenschuss, A., J. Phys. Chem., 78, 1106 (1974)
- (13) Spedding, F. H., Naumann, A. W., Eberts, R. E., J. Am. Chem. Soc., 81, 23 (1959)
- Spedding, F. H., Pikal, M. J., Ayers, B. O., J. Phys. Chem , 70, 2440 (14)(1966)
- (15) Spedding, F. H., Saeger, V. W., Gray, K. A., Boneau, P. K., Brown, M. A., DeKock, C. W., Baker, J. L., Shiers, L. E., Weber, H. O., Habenschuss, A., J. Chem. Eng. Data, 20, 72 (1975). (16)
- Spedding, F. H., Shiers, L. E., Brown, M. A., Baker, J. L., Gutierrez, L., McDowell, L. S., Habenschuss, A., *J. Phys. Chem.*, **79**, 1087 (1975). (17) Spedding, F. H., Shiers, L. E., Brown, M. A., Derer, J. L., Swanson, D. L.,
- Habenschuss, A., J. Chem. Eng. Data, 20, 81 (1975).

- (18) Spedding, F. H., Shiers, L. E., Rard, J. A., J Chem. Eng. Data, 20, 88 (1975)
- (19)
- Vanderzee, C. E., Nutter, J. D., *J. Chem. Eng. Data*, **19**, 268 (1974). Wagman, D. D., Evans, W. H., Parker, V. B., Halow, I., Bailey, S. M., Schumm, R. H., *Natl. Bur. Stand. (U.S.), Tech. Note*, **No. 270-(1-6)** (20)(1968-1971).
- Wallace, W. E., Robinson, A. L., J. Am. Chem. Soc., 63, 958 (1941).
- (22) Young, T. F., Groenier, W. L., J. Am. Chem. Soc., 58, 187 (1936).
   (23) Young, T. F., Seligman, P., J. Am. Chem. Soc., 60, 2379 (1938).
   (24) Young, T. F., Vogel, O. G., J. Am. Chem. Soc., 54, 3030 (1932).
- (25) Zinov ev, A. A., Shchirova, N. A., Russ. J. Inorg. Chem., 5, 626 (1960).

# Vapor-Liquid Equilibrium Constants of Alkylbenzenes in n-Alkane Solvents at Infinite Dilution by Gas-Liquid Chromatography

Toshiaki Sugiyama, \*† Tsugio Takeuchi, and Yoshihito Suzuki

Department of Synthetic Chemistry, Faculty of Engineering, Nagoya University, Nagoya, Japan

Vapor-liquid equilibrium constants at infinite dilution of benzene and alkylbenzenes in n-octacosane, ndotriacontane, and n-hexatriacontane solvents were measured by gas-liquid chromatography at five temperatures, 78.0, 84.0, 90.0, 96.0, and 102.0 °C. The thermodynamic properties of solution of alkylbenzenes from the gas phase to n-alkane solvent were also determined from the data of vapor-liquid equilibrium constants. The partial molar enthalpy of solution is related with the structure of alkylbenzenes through an equation by a set of values of structural parameters.

The properties of molecules in liquid phases have been greatly studied by experimental methods of static and dynamic techniques. Theoretical approaches of the behavior of molecules in pure liquids and liquid mixtures are mainly limited to ideal or simple liquid systems. Study for theoretical research demands therefore determining the thermodynamic properties of liquid in simple systems. In liquids consisting of pure substance, molecules frequently have association by hydrogen bonding or other strong intermolecular interaction. The molecular association distorts the liquid phase from the ideal to nonideal liquid system, e.g., polyassociation of alcohols. In solutions at infinite dilution, solute molecules no longer associate with each other, but associate with surrounding solvent molecules since the solute molecule is enveloped by solvent molecules only. Thermodynamic properties of solute molecules are highly dependent on the nature of solvent molecules. The variation of the thermodynamic properties with solvents will give us the characteristics of many interacting abilities of solute molecules, such as dispersion, induced dipole, dipole-dipole interaction, Coulomb force, charge transfer interaction, coordinate bond, and hydrogen bonding energies. Solution at infinite dilution is an ideal state for solute molecules. The properties of the solution are easily combined with current theories of solutions of molecules. Gas-liquid chromatography (GLC) provides the properties at infinite dilution on the basis of GLC conditions. Recently, GLC

<sup>†</sup> Address correspondence to this author at the Department of Industrial Chemistry, Suzuka College of Technology, Shiroko-cho, Suzuka, Mie, Japan.

is a rapid and reliable method for determinination of accurate thermodynamic properties (1, 2, 4-12, 15-21).

In this paper, GLC was used here to study alkylbenzenes in three high-molecular-weight normal alkane solvents. Vaporliquid equilibrium constants at infinite dilution are obtained at five temperatures. Heat of solution from the gas phase to n-alkane solvent is also determined and can be given by a relation with structure of the solute molecule by a consistent set of parameters.

# **Experimental Section**

The gas chromatograph used was an Hitachi K53 equipped with a thermal conductivity detector. Column temperatures for measurement of retention volumes are 78.0, 84.0, 90.0, 96.0, and 102.0 °C. The column temperatures were maintained constant within 0.1 °C. Hydrogen was used as a carrier gas. The carrier gas flow rate was measured at room temperature with a soap-film flowmeter placed at the detector outlet. Inlet and outlet pressure of carrier gas was determined to 0.1 mmHg by mercury manometers.

Three stationary liquid phases were used: n-octacosane  $(n-C_{28}H_{58})$ , *n*-dotriacontane  $(n-C_{32}H_{66})$ , and *n*-hexatriacontane (n-C<sub>36</sub>H<sub>74</sub>). These phases were obtained from the Tokyo Chemical Industry Co., Ltd., Tokyo, Japan. n-C32H66 was purified three times by recrystallization from ethanol, while n-C<sub>28</sub>H<sub>58</sub> and n-C<sub>36</sub>H<sub>74</sub> were purified once similarly.

Benzene, toluene, ethylbenzene, p-, m-, and o-xylenes, cumene, and 1,3,5-, 1,2,4-, and 1,2,3-trimethylbenzenes were chosen for this study of alkylbenzenes and used without further purification.

The liquid for stationary phase was coated on to solid support material in the usual manner. The solid support used was Celite 545, 80-100 mesh, hexamethyldisilazane (HMDS) treated. The amount of each liquid phase on the support material was changed from 10 to 15 wt %. The coated support material was packed into 1 m X 3 mm i.d. stainless steel tubing. For reference, stationary-liquid-uncoated support material was also packed into different tubing. Each column was conditioned at 110 °C for about 24 h with a gentle flow of a carrier gas. The smallest detectable sample sizes were used at all times so as to ensure operation in the Henry's law region of solute con-

Received for review February 24, 1976. Accepted October 8, 1976. This report was prepared for the U.S. Energy Research and Development Administration under Contract No. W-7405-eng-82, and is based in part, on the Ph.D. dissertations of M. A. Mohs (1970) and J. L. Derer (1974) submitted to the Graduate Faculty of Iowa State University, Ames, Iowa 50010.